React中的useMemo 和 useEffect 哪个先执行?
在 React 组件的渲染过程中,useMemo 和 useEffect 的执行顺序是不同的。具体来说:
-
useMemo 先执行:useMemo 是在 渲染阶段 执行的,它的作用是缓存计算结果,确保在渲染过程中可以直接使用缓存的值。
-
useEffect 后执行:useEffect 是在 提交阶段 执行的,它的作用是处理副作用(如数据获取、DOM 操作等),并且是在 DOM 更新之后才运行。
详细执行顺序
- 组件渲染阶段:
-
React 调用组件的渲染方法(函数组件的函数体或类组件的 render 方法)。
-
在渲染过程中,useMemo 会被执行,计算并缓存值。
-
如果依赖项没有变化,useMemo 会直接返回缓存的值,避免重复计算。
- DOM 更新阶段:
- React 将组件的渲染结果应用到 DOM 上,更新 UI。
- 提交阶段:
-
在 DOM 更新完成后,React 会执行 useEffect 中的副作用函数。
-
如果 useEffect 有清理函数(返回的函数),它会在组件卸载或依赖项变化时执行。
示例代码
import React, { useMemo, useEffect, useState } from 'react';function MyComponent({ a, b }) {// useEffect 写在 useMemo 上面useEffect(() => {console.log('useEffect: Side effect after DOM update');return () => {console.log('useEffect: Cleanup');};}, [a, b]);// useMemo 写在 useEffect 下面const memoizedValue = useMemo(() => {console.log('useMemo: Calculating expensive value...');return a + b;}, [a, b]);console.log('Render: Component rendering...');return (<div><p>Memoized Value: {memoizedValue}</p></div>);
}function App() {const [a, setA] = useState(1);const [b, setB] = useState(2);return (<div><MyComponent a={a} b={b} /><button onClick={() => setA(a + 1)}>Increment A</button><button onClick={() => setB(b + 1)}>Increment B</button></div>);
}
控制台输出顺序
- 当组件首次渲染时:
Render: Component rendering...
useMemo: Calculating expensive value...
useEffect: Side effect after DOM update
- 当 a 或 b 变化时:
Render: Component rendering...
useMemo: Calculating expensive value...
useEffect: Cleanup
useEffect: Side effect after DOM update
总结
-
useMemo 在渲染阶段执行:无论它写在 useEffect 上面还是下面,它都会在组件渲染时执行。
-
useEffect 在提交阶段执行:它总是在 DOM 更新后执行,与代码书写顺序无关。
-
React 的执行顺序是固定的:useMemo 先执行,useEffect 后执行。
如果你需要在渲染阶段避免昂贵的计算,使用 useMemo;如果你需要在 DOM 更新后执行某些操作(如数据获取或订阅),使用 useEffect。
相关文章:
React中的useMemo 和 useEffect 哪个先执行?
在 React 组件的渲染过程中,useMemo 和 useEffect 的执行顺序是不同的。具体来说: useMemo 先执行:useMemo 是在 渲染阶段 执行的,它的作用是缓存计算结果,确保在渲染过程中可以直接使用缓存的值。 useEffect 后执行&…...

错误修改系列---基于RNN模型的心脏病预测(pytorch实现)
前言 前几天发布了pytorch实现,TensorFlow实现为:基于RNN模型的心脏病预测(tensorflow实现),但是一处繁琐地方 一处错误,这篇文章进行修改,修改效果还是好了不少;源文章为:基于RNN模型的心脏病…...

Table-Augmented Generation(TAG):Text2SQL与RAG的升级与超越
当下AI与数据库的融合已成为推动数据管理和分析领域发展的重要力量。传统的数据库查询方式,如结构化查询语言(SQL),要求用户具备专业的数据库知识,这无疑限制了非专业人士对数据的访问和利用。为了打破这一壁垒&#x…...
Stable Diffusion本地部署教程(附安装包)
想使用Stable Diffusion需要的环境有哪些呢? python3.10.11(至少也得3.10.6以上):依赖python环境NVIDIA:GPUgit:从github上下载包(可选,由于我已提供安装包,你可以不用git)Stable Diffusion安装包工具包: NVIDIA:https://developer.nvidia.com/cuda-toolkit-archiv…...

【物联网原理与运用】知识点总结(上)
目录 名词解释汇总 第一章 物联网概述 1.1物联网的基本概念及演进 1.2 物联网的内涵 1.3 物联网的特性——泛在性 1.4 物联网的基本特征与属性(五大功能域) 1.5 物联网的体系结构 1.6 物联网的关键技术 1.7 物联网的应用领域 第二章 感知与识别技术 2.1 …...

JuiceFS 2024:开源与商业并进,迈向 AI 原生时代
即将过去的 2024 年,是 JuiceFS 开源版本推出的第 4 年,企业版的第 8 个年头。回顾过去这一年,JuiceFS 社区版依旧保持着快速成长的势头,GitHub 星标突破 11.1K,各项使用指标增长均超过 100%,其中文件系统总…...

C#,动态规划问题中基于单词搜索树(Trie Tree)的单词断句分词( Word Breaker)算法与源代码
1 分词 分词是自然语言处理的基础,分词准确度直接决定了后面的词性标注、句法分析、词向量以及文本分析的质量。英文语句使用空格将单词进行分隔,除了某些特定词,如how many,New York等外,大部分情况下不需要考虑分词…...

计算机网络(六)应用层
6.1、应用层概述 我们在浏览器的地址中输入某个网站的域名后,就可以访问该网站的内容,这个就是万维网WWW应用,其相关的应用层协议为超文本传送协议HTTP 用户在浏览器地址栏中输入的是“见名知意”的域名,而TCP/IP的网际层使用IP地…...

上海亚商投顾:沪指探底回升微涨 机器人概念股午后爆发
上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 市场全天探底回升,沪指盘中跌超1.6%,创业板指一度跌逾3%,午后集体拉升翻红…...
conda相关操作
conda 是一个开源的包管理和环境管理工具,主要用于 Python 和数据科学领域。它可以帮助用户安装、更新、删除和管理软件包,同时支持创建和管理虚拟环境。以下是关于 conda 的所有常见操作: 1. 安装 Conda Conda 通常通过安装 Anaconda 或 Mi…...

使用TCP协议实现智能聊天机器人
实验目的与要求 本实验是程序设计类实验,要求使用原始套接字编程,掌握TCP/IP协议与网络编程Sockets通信模型,并根据教师给定的任务要求,使用TCP协议实现智能聊天机器人。 (1)熟悉标准库socket 的用法。 …...
PHP二维数组去除重复值
Date: 2025.01.07 20:45:01 author: lijianzhan PHP二维数组内根据ID或者名称去除重复值 代码示例如下: // 假设 data数组如下 $data [[id > 1, name > Type A],[id > 2, name > Type B],[id > 1, name > Type A] // 重复项 ];// 去重方法 $dat…...

2025年01月11日Github流行趋势
项目名称:xiaozhi-esp32 项目地址url:https://github.com/78/xiaozhi-esp32项目语言:C历史star数:2433今日star数:321项目维护者:78, MakerM0, whble, nooodles2023, Kevincoooool项目简介:构建…...

备战蓝桥杯 队列和queue详解
目录 队列的概念 队列的静态实现 总代码 stl的queue 队列算法题 1.队列模板题 2.机器翻译 3.海港 双端队列 队列的概念 和栈一样,队列也是一种访问受限的线性表,它只能在表头位置删除,在表尾位置插入,队列是先进先出&…...

IT面试求职系列主题-Jenkins
想成功求职,必要的IT技能一样不能少,先说说Jenkins的必会知识吧。 1) 什么是Jenkins Jenkins 是一个用 Java 编写的开源持续集成工具。它跟踪版本控制系统,并在发生更改时启动和监视构建系统。 2)Maven、Ant和Jenkins有什么区别…...

Vue篇-06
1、路由简介 vue-rooter:是vue的一个插件库,专门用来实现SPA应用 1.1、对SPA应用的理解 1、单页 Web 应用(single page web application,SPA)。 2、整个应用只有一个完整的页面 index.html。 3、点击页面中的导航链…...

mysql binlog 日志分析查找
文章目录 前言一、分析 binlog 内容二、编写脚本结果总结 前言 高效快捷分析 mysql binlog 日志文件。 mysql binlog 文件很大 怎么快速通过关键字查找内容 一、分析 binlog 内容 通过 mysqlbinlog 命令可以看到 binlog 解析之后的大概样子 二、编写脚本 编写脚本 search_…...
ubuntu 配置OpenOCD与RT-RT-thread环境的记录
1.git clone git://git.code.sf.net/p/openocd/code openocd 配置gcc编译环境 2. sudo gedit /etc/apt/source.list #cdrom sudo apt-get install git sudo apt-get install libtool-bin sudo apt-get install pkg-config sudo apt-install libusb-1.0-0-dev sudo apt-get…...

双系统解决开机提示security Policy Violation的方法
最近,Windows系统更新后,发现电脑开机无法进入桌面,显示“Verifiying shim SBAT data failed: security Policy Violation; So mething has gone seriously Wrong: SBAT self-check failed: Security Policy Violation”的英文错误信息。为了…...
附加共享数据库( ATTACH DATABASE)的使用场景
附加共享数据库(使用 ATTACH DATABASE)的功能非常实用,通常会在以下几种场景下需要用到: 1. 跨数据库查询和分析 场景: 你的公司有两个独立的数据库: 一个存储了学生信息 (school.db)一个存储了员工信息 …...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...

《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

sipsak:SIP瑞士军刀!全参数详细教程!Kali Linux教程!
简介 sipsak 是一个面向会话初始协议 (SIP) 应用程序开发人员和管理员的小型命令行工具。它可以用于对 SIP 应用程序和设备进行一些简单的测试。 sipsak 是一款 SIP 压力和诊断实用程序。它通过 sip-uri 向服务器发送 SIP 请求,并检查收到的响应。它以以下模式之一…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...