当前位置: 首页 > news >正文

【深度学习 】训练过程中loss出现nan

@[toc]【深度学习 】训练过程中loss出现nan

训练过程中loss出现nan

在深度学习中,loss 出现 NaN 通常是由数值不稳定或计算错误引起的。

1. 学习率过高

原因: 学习率过大可能导致权重更新幅度过大,引发数值不稳定。

解决方法: 降低学习率,或使用学习率调度器逐步调整。

2. 数据问题

原因: 输入数据包含 NaN 或 inf,或数据范围过大。

解决方法: 检查数据预处理,确保数据标准化或归一化,并移除异常值。

3. 梯度爆炸

原因: 梯度值过大,导致权重更新后出现 NaN。

解决方法: 使用梯度裁剪(gradient clipping)限制梯度范围。

4. 损失函数问题

原因: 某些损失函数(如对数损失)在输入接近零时可能产生 NaN。

解决方法: 检查损失函数输入,避免极端值,或添加微小常数(如 1e-8)防止除零。

5. 权重初始化不当

原因: 权重初始化不合适可能导致数值不稳定。

解决方法: 使用合适的初始化方法(如 Xavier 或 He 初始化)。

6. 数值精度问题

原因: 使用低精度浮点数(如 float16)可能引发数值不稳定。

解决方法: 尝试使用 float32 或 float64 提高精度。

7. 特定模块问题

原因: 某些模块可能由于输入或参数问题导致 NaN。

解决方法: 检查这些模块的输入和参数,确保数值合理。

8. 调试步骤

检查数据: 确保输入数据无异常。

检查损失函数: 确认输入值在合理范围内。

检查梯度: 使用调试工具(如 torch.autograd.gradcheck)检查梯度计算。

逐步调试: 逐层检查网络输出,定位问题模块。

9. 代码示例

import torch
import torch.nn as nn
import torch.optim as optim# 示例模型
model = nn.Sequential(nn.Linear(10, 50),nn.ReLU(),nn.Linear(50, 1)
)# 示例数据
inputs = torch.randn(32, 10)
targets = torch.randn(32, 1)# 损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)# 训练步骤
outputs = model(inputs)
loss = criterion(outputs, targets)# 检查 loss 是否为 NaN
if torch.isnan(loss):print("Loss is NaN. Checking gradients and inputs...")# 进一步调试optimizer.zero_grad()
loss.backward()
optimizer.step()

相关文章:

【深度学习 】训练过程中loss出现nan

[toc]【深度学习 】训练过程中loss出现nan 训练过程中loss出现nan 在深度学习中,loss 出现 NaN 通常是由数值不稳定或计算错误引起的。 1. 学习率过高 原因: 学习率过大可能导致权重更新幅度过大,引发数值不稳定。 解决方法: 降低学习率,…...

Linux - 什么是线程和线程的操作

线程概念 什么是线程: 线程(Thread)是操作系统能够进行运算调度的最小单位. 它被包含在进程之中, 是进程中的实际运作单位. 一个进程可以包含多个线程. 进程 : 线程 1 : n (n > 1). 进程是系统分配资源的基本单位. 线程则是系统调度的基本单位. 在…...

windows及linux 安装 Yarn 4.x 版本

1. 确保系统环境准备 a. 安装 Node.js Yarn 依赖于 Node.js,所以需要先安装 Node.js。前往 Node.js 官网 下载并安装适合你的 Windows 版本的 Node.js(推荐 LTS 版本)。安装完成后,打开命令提示符(CMD)或 PowerShell,验证安装:node -v npm -v如果显示版本号,则表示安…...

如何设计一个 RPC 框架?需要考虑哪些点?

面试官:如何设计一个 RPC 框架?需要考虑哪些点? 设计一个远程过程调用(RPC)框架是一个复杂的系统工程,涉及多个方面的考虑。一个好的 RPC 框架应具备可扩展性、灵活性、易用性和高性能。下面是设计 RPC 框…...

初学stm32 --- DAC输出三角波和正弦波

输出三角波实验简要: 1,功能描述 通过DAC1通道1(PA4)输出三角波,然后通过DS100示波器查看波形 2,关闭通道1触发(即自动) TEN1位置0 3,关闭输出缓冲 BOFF1位置1 4,使用12位右对齐模式 将数字量写入DAC_…...

开源cJson用法

cJSON cJSON是一个使用C语言编写的JSON数据解析器,具有超轻便,可移植,单文件的特点,使用MIT开源协议。 cJSON项目托管在Github上,仓库地址如下: https://github.com/DaveGamble/cJSON 使用Git命令将其拉…...

【学习笔记】理解深度学习和机器学习的数学基础:数值计算

深度学习作为人工智能领域的一个重要分支,其算法的实现和优化离不开数值计算。数值计算在深度学习中扮演着至关重要的角色,它涉及到如何在计算机上高效、准确地解决数学问题。本文将介绍深度学习中数值计算的一些关键概念和挑战,以及如何应对…...

如何使用CSS让页面文本两行显示,超出省略号表示

talk is cheap, show me the code 举个栗子&#xff0c;如下&#xff1a; <span class"a">我说说<b class"b">打瞌睡党风建设打火机</b>说说色儿</span>a{display:block/inline-block;width:100px;overflow: hidden; white-spac…...

likeshop同城跑腿系统likeshop回收租赁系统likeshop多商户商城安装及小程序对接方法

前言&#xff1a;首先likeshop是一个开发平台&#xff0c;是一个独创的平台就像TP内核平台一样&#xff0c;你可以在这个平台上开发和衍生出很多伟大的产品&#xff0c;以likeshop为例&#xff0c;他们开发出商城系统&#xff0c;团购系统&#xff0c;外卖点餐系统&#xff0c;…...

C# 与 Windows API 交互的“秘密武器”:结构体和联合体

一、引言 在 C# 的编程世界里&#xff0c;当我们想要深入挖掘 Windows 系统的底层功能&#xff0c;与 Windows API 打交道时&#xff0c;结构体和联合体就像是两把神奇的钥匙&#x1f511; 它们能够帮助我们精准地操控数据&#xff0c;实现一些高级且强大的功能。就好比搭建一…...

PHP 使用 Redis

PHP 使用 Redis PHP 是一种广泛使用的服务器端编程语言,而 Redis 是一个高性能的键值对存储系统。将 PHP 与 Redis 结合使用,可以为 Web 应用程序提供快速的读写性能和丰富的数据结构。本文将详细介绍如何在 PHP 中使用 Redis,包括安装、连接、基本操作以及一些高级应用。 …...

嵌入式系统Linux实时化(四)Xenomai应用开发测试

1、Xenomai 原生API 任务管理 Xenomai 本身提供的一系列多任务调度机制,主要有以下一些函数: int rt_task_create (RT_TASK task, const char name, int stksize, int prio, intmode) ; 任务的创建;int rt_task_start(RT_TASK task, void(entry)(void cookie), void cookie…...

26个开源Agent开发框架调研总结(2)

根据Markets & Markets的预测&#xff0c;到2030年&#xff0c;AI Agent的市场规模将从2024年的50亿美元激增至470亿美元&#xff0c;年均复合增长率为44.8%。 Gartner预计到2028年&#xff0c;至少15%的日常工作决策将由AI Agent自主完成&#xff0c;AI Agent在企业应用中…...

Element UI与Element Plus:深度剖析

文章目录 前言一、概述二、技术特性三、设计理念四、使用体验五、迁移指南结语 前言 随着前端开发技术的快速发展&#xff0c;Vue.js 生态系统中的组件库也在不断进化。Element UI 和 Element Plus 是两个深受开发者喜爱的 Vue 组件库&#xff0c;它们分别构建于 Vue 2.x 和 V…...

二、BIO、NIO编程与直接内存、零拷贝

一、网络通信 1、什么是socket&#xff1f; Socket 是应用层与 TCP/IP 协议族通信的中间软件抽象层&#xff0c;它是一组接口&#xff0c;一般由操作 系统提供。客户端连接上一个服务端&#xff0c;就会在客户端中产生一个 socket 接口实例&#xff0c;服务端每接受 一个客户端…...

VSCode 更好用的设置

配置 {"terminal.integrated.fontSize": 15,"security.workspace.trust.untrustedFiles": "open","editor.minimap.enabled": false,"workbench.colorTheme": "Visual Studio 2017 Light - C","gnuGlobal.c…...

【git】-3 github创建远程仓库,上传自己的项目,下载别人的项目

一、如何使用Github 1、创建远程仓库 2、使用github拉取/推送代码 克隆仓库 向远程仓库推送代码-git push 二、上传我们自己的项目到github 方法一&#xff1a;直接上传 方法二&#xff1a;使用git命令 方法三&#xff1a; 将仓库拉取到本地上传 三、下载别人的项目 …...

计算机组成原理(1)

系统概述 计算机硬件基本组成早期冯诺依曼机现代计算机 计算机各部分工作原理主存储器运算器控制器计算机工作过程 此文章的图片资源获取来自于王道考研 计算机硬件基本组成 早期冯诺依曼机 存储程序是指将指令以二进制的形式事先输入到计算机的主存储器&#xff0c;然后按照…...

Openstack网络组件之Neutron

从Nova到Neutron&#xff1a;OpenStack网络架构的演变 在云计算和虚拟化技术迅猛发展的背景下&#xff0c;OpenStack 成为了构建私有云和公有云平台的首选解决方案之一。早期版本中&#xff0c;Nova 项目不仅负责计算资源的管理&#xff0c;还承担了提供基本网络连接的任务。然…...

神州数码交换机和路由器命令总结

神州数码交换机和路由器命令总结 一、神州数码交换机命令总结 1. 交换机恢复出厂设置及其基本配置. 1) //进入特权模式 2) del startup.cfg 2. Telnet方式管理交换机. 1) //进入全局配置模式 2) enable password 0 [密码] 3) Line 0 4 4) Password 0 [密码] 5) Login 3. 交换机…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻

在如今就业市场竞争日益激烈的背景下&#xff0c;越来越多的求职者将目光投向了日本及中日双语岗位。但是&#xff0c;一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧&#xff1f;面对生疏的日语交流环境&#xff0c;即便提前恶补了…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难&#xff0c;相信大家会学的很愉快&#xff0c;当然对于有后端基础的朋友来说&#xff0c;本期内容更加容易了解&#xff0c;当然没有基础的也别担心&#xff0c;本期内容会详细解释有关内容 本期用到的软件&#xff1a;yakit&#xff08;因为经过之前好多期…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...