sympy常用函数与错误笔记
文章目录
- 前言
- 一、sympy基本函数介绍
- 变量定义
- 1. sp.Symbol("x") 或 sp.symbols("m n")
- 2. sp.Function("y")
- 3. func(x).diff(x, n)
- 定义方程与求解符号
- 1. sp.Eq(lhs, rhs)
- 2. 求解函数(*代表了常用且重要,其他部分作为拓展,可以有需要的时候再查询使用)
- 3. func.subs(a, b) 或者 func.subs({a: b})
- 4. func.evalf(subs, n)
- 二、 常见错误(持续更新)
- TypeError: cannot create mpf from x
- TypeError: 'Equality' object is not subscriptable
- 三、计算模板
前言
本文将针对常用的函数进行用途分析与介绍,对代码过程中可能会遇到的报错进行分析,并给出实例帮助理解代码。文章较长,可以针对感兴趣的部分进行跳转
一、sympy基本函数介绍
变量定义
1. sp.Symbol(“x”) 或 sp.symbols(“m n”)
这是定义变量,如f(x)中的x就是使用Symbol定义的
使用Symbol只能定义一个变量, 想要一次性定义多个变量,需要使用symbols,不同的变量之间用空格间隔
2. sp.Function(“y”)
定义函数,相当于f(x)中的f,这时候程序没法判断它是谁的函数,需要显式的定义指定函数的变量,如f(x)
3. func(x).diff(x, n)
定义函数关于x的n阶导数
在求解过程中尽量都采用diff方法,而非使用Derivative()函数
定义方程与求解符号
1. sp.Eq(lhs, rhs)
lhs, rhs 分别代表了等式左边与等式右边公式
例如y = x就需要表示为sp.Eq(y(x), x)
tip: 如果不是y(x),在求解这个等式的时候会报错哦,一定要记得定义它是谁的函数
2. 求解函数(*代表了常用且重要,其他部分作为拓展,可以有需要的时候再查询使用)
函数名称 | 用途 | 主要参数 | 说明 | 示例 |
---|---|---|---|---|
solve | 解普通方程的解析解 | f (方程或方程组)symbols (求解的变量)多个变量或方程需要用 [] 框起来 | 通用函数,用于解一元或多元代数方程或方程组。 | solve(x**2 - 4, x) # 相当于求解 x 2 − 4 = 0 x^2 - 4 = 0 x2−4=0 # [ -2, 2 ] |
nsolve | 解普通方程数值解 | f x (待求解变量)x0 (初始猜测值,与结果有关) | 用于求方程的数值解,需要输入初始猜测值,并寻找该猜测值附近的数值解。通常返回一个近似解,也可使用 .evalf() 方法进行数值化。 | nsolve(sin(x) - 0.5, 0) # 因为是从0为初始值,求解 s i n ( x ) = 0.5 sin(x) = 0.5 sin(x)=0.5 最近的答案,所以应该是 π 6 \frac{\pi}{6} 6π约等于0.5236 # 返回的结果是数值解 |
dsolve | 解微分方程 | eq (方程)func (求解的函数,如 f(x) )ics (初始条件,可选) | 用于求解一阶或高阶常微分方程的解析解,支持线性和非线性方程。传入 ics ,可以直接算出微分方程中的常数。 | x = symbols(‘x’) f = Function(‘f’)(x) ode = Eq(diff(f, x), f) # 求解最常规的微分方程 f ′ ( x ) = f ( x ) f'(x) = f(x) f′(x)=f(x) dsolve(ode, f) # [Eq( f ( x ) , C 1 ∗ e x f(x), C1* e^x f(x),C1∗ex)] |
pdsolve | 解偏微分方程 (复杂一些时无法直接求解) | eq func | 专门用于求解偏微分方程的解析解,通常需要配合分离变量法。当直接输入的偏微分方程过于复杂时,先进行变量分离再尝试求解。 | # 一般使用方法类似 dsolve,但处理偏微分方程时 # pdsolve(eq, func) |
linsolve | 解线性方程组 (符号解) | system symbols | 适合求解线性方程组,返回向量形式的解。 | x, y = symbols(‘x y’) system = [x + y - 2, x - y - 0] linsolve(system, [x, y]) # 求解一个简单的线性方程组,记住system里的式子右侧都是0 # { (1, 1) } |
nonlinsolve | 解非线性方程组 (符号解) | system symbols | 用于求解非线性方程组,返回集合形式的符号解。 | x, y = symbols(‘x y’) system = [ x 2 + y − 4 x^2 + y - 4 x2+y−4, x − y 2 + 1 x - y^2 + 1 x−y2+1] nonlinsolve(system, [x, y]) |
solve_poly_system | 解多项式方程组 (多变量,符号解) | system symbols | 用于解特定的多项式方程组。 | # 用法与 solve 类似,但主要针对多项式方程 # solve_poly_system([Eq(…)], [x, y]) |
solve_univariate_inequality | 解一元不等式 | ineq (不等式)symbol (变量) | 用于求解一元不等式,返回区间形式或逻辑表达式。 | x = Symbol(‘x’, real=True) ineq = (x**2 < 4) solve_univariate_inequality(ineq, x) # -2 < x < 2 |
reduce_inequalities | 简化或求解不等式组 | inequalities symbols | 简化复杂的不等式组,返回符号形式的解集。 | x = symbols(‘x’, real=True) reduce_inequalities([[x > 1, x < 3]], [x]) # 1 < x < 3 |
3. func.subs(a, b) 或者 func.subs({a: b})
subs输入一个字典或者两个参数,可以将变量换成指定的值,如上式中的a替换为了b
例如:
对于微分方程中输出的结果中有C1,在已知某个初始值(如 y ( 0 ) = 1 2 y(0) = \frac{1}{2} y(0)=21)的情况下,对结果
r e s = E q ( y ( x ) = C 1 e − x + e x 2 ) res = Eq(y{\left(x \right)} = C_{1} e^{- x} + \frac{e^{x}}{2}) res=Eq(y(x)=C1e−x+2ex)进行常数的求解
C1 = sp.Symbol("C1") # 必须先定义C1是一个变量,才能作为nsolve中的实参进行求解
res = res.subs({y(x): 1/2, x: 0}) # 必须先替换y(x),再替换x
C = sp.nsolve(res, C1, 0) # 这样就可以解得常数值
4. func.evalf(subs, n)
evalf是一个方法,是基于结果上的方法,可以计算某个表达式的具体值,也可以对nsolve的结果进行位数调整或者
例如:
(1 / a).evalf(subs={a: 2}, n=4)
# 结果为0.5000
二、 常见错误(持续更新)
TypeError: cannot create mpf from x
nsolve(f, x, x0), 这通常与nsolve中没有初始值有关,设置一个初始值就好了
TypeError: ‘Equality’ object is not subscriptable
因为dsolve解的的结果是一个列表,使用dsolve[0]获取的equality是不可用索引的
只能通过lhs和rhs分别获得等式左右两边的式子
三、计算模板
- 设置变量, 利用symbols和Function设定变量与函数
- 利用sp.Eq设置等式
- 使用对应的solve函数进行求解(如有初值注意初值条件带入)
- (可选)使用subs对求解的结果进行值代入,再使用nsolve对某些常量进行求解
例子 d y d x + y ( x ) = e x \frac{d y}{d x} + y{\left(x \right)} = e^{x} dxdy+y(x)=ex
# 1. 进行变量设置
y = sp.Function('y')
x = sp.symbols('x')
y_ = y(x).diff(x) # 直接使用这个为一阶导数
# 2. 设置方程
eq = sp.Eq(y_ + y(x), sp.exp(x))
# 3. 求解方程,因为是微分方程所以用dsolve
res = sp.dsolve(eq, y(x))
sp.pprint(res)# 4. 如果有初值
res = sp.dsolve(eq, y(x), ics={y(0):1}) # 使用ics(初始条件)可以直接求解常量
# 或对结果使用sub后利用nsolve求解
相关文章:
sympy常用函数与错误笔记
文章目录 前言一、sympy基本函数介绍变量定义1. sp.Symbol("x") 或 sp.symbols("m n")2. sp.Function("y")3. func(x).diff(x, n) 定义方程与求解符号1. sp.Eq(lhs, rhs)2. 求解函数(*代表了常用且重要,其他部分作为拓展&…...
47_Lua文件IO操作
文件I/O(Input/Output)操作在Lua中用于与外部文件进行交互,包括读取文件中的数据和将数据写入文件。Lua提供了两种模式来进行文件操作:简单模式和完全模式。下面将详细介绍这两种模式的基本使用。 1.简单模式 1.1 简单模式介绍 简单模式提供了基本的文件操作功能,它主要…...
nginx-lua模块处理流程
一. 简述: nginx的模块化设计使得每一个http模块可以只专注于完成一个独立的,简单的功能。一个请求的完整处理过程可以由多个http模块共同协作完成,这种设计具有简单性,测试性,扩展性,灵活性。关于nginx 的…...

【大数据】机器学习-----最开始的引路
以下是关于机器学习的一些基本信息,包括基本术语、假设空间、归纳偏好、发展历程、应用现状和代码示例: 一、基本术语 样本(Sample): 也称为实例(Instance)或数据点(Data Point&…...
【前端】自学基础算法 -- 21.图的广度优先搜索
图的广度优先搜索 简介 图的广度优先搜索,沿着图的宽度遍历图的节点,先访问离起始节点最近的节点,然后逐渐向外扩展。 基本步骤: 选择一个起始节点作为当前节点。将当前节点加入队列。当队列不为空时,重复以下步骤…...

ChatGPT与Claude AI:两大生成式对话模型的比较分析
自ChatGPT推出以来,这款强大的AI聊天机器人迅速吸引了全球的关注。其出色的对话能力和多样化的应用场景,成为许多人初次体验基于大规模语言模型的潜力。然而,在这个快速发展的领域中,另一款AI也在悄然崭露头角,那就是由…...
前端开发:盒子模型、块元素
1.border边框 *{box-sizing:border-box; } //使所有边框不再撑大盒子模型 粗细 : border-width 样式 : border-style, 默认没边框 . solid 实线边框 dashed 虚线边框 dotted 点线边框 颜色 : border-color div { width : 200px ; height : 200px ; border : …...
升级 CentOS 7.x 系统内核到 4.4 版本
问题描述 在 CentOS 7.x 系统中,默认内核版本是 3.10.x,这个版本可能会带来一些与 Docker 和 Kubernetes 兼容性的问题,导致系统性能不稳定或功能异常。为了提高系统的稳定性和兼容性,建议升级到更高版本的内核,例如 …...

播放音频文件同步音频文本
播放音频同步音频文本 对应单个文本高亮显示 使用audio音频文件对应音频文本资源 音频文本内容(Json) [{"end": 4875,"index": 0,"speaker": 0,"start": 30,"text": "70号二啊,","tex…...

springboot使用Easy Excel导出列表数据为Excel
springboot使用Easy Excel导出列表数据为Excel Easy Excel官网:https://easyexcel.opensource.alibaba.com/docs/current/quickstart/write 主要记录一下引入时候的pom,直接引入会依赖冲突 解决方法: <!-- 引入Easy Excel的依赖 -->&l…...

day07_Spark SQL
文章目录 day07_Spark SQL课程笔记一、今日课程内容二、Spark SQL函数定义(掌握)1、窗口函数2、自定义函数背景2.1 回顾函数分类标准:SQL最开始是_内置函数&自定义函数_两种 2.2 自定义函数背景 3、Spark原生自定义UDF函数3.1 自定义函数流程&#x…...

高性能现代PHP全栈框架 Spiral
概述 Spiral Framework 诞生于现实世界的软件开发项目是一个现代 PHP 框架,旨在为更快、更清洁、更卓越的软件开发提供动力。 特性 高性能 由于其设计以及复杂精密的应用服务器,Spiral Framework框架在不影响代码质量以及与常用库的兼容性的情况下&a…...

LeetCode - #182 Swift 实现找出重复的电子邮件
网罗开发 (小红书、快手、视频号同名) 大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等…...
《解锁鸿蒙Next系统人工智能语音助手开发的关键步骤》
在当今数字化时代,鸿蒙Next系统与人工智能的融合为开发者带来了前所未有的机遇,开发一款人工智能语音助手应用更是备受关注。以下是在鸿蒙Next系统上开发人工智能语音助手应用的关键步骤: 环境搭建与权限申请 安装开发工具:首先需…...

【Linux网络编程】数据链路层 | MAC帧 | ARP协议
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站 🌈个人主页: 南桥几晴秋 🌈C专栏: 南桥谈C 🌈C语言专栏: C语言学习系…...

《自动驾驶与机器人中的SLAM技术》ch7:基于 ESKF 的松耦合 LIO 系统
目录 基于 ESKF 的松耦合 LIO 系统 1 坐标系说明 2 松耦合 LIO 系统的运动和观测方程 3 松耦合 LIO 系统的数据准备 3.1 CloudConvert 类 3.2 MessageSync 类 4 松耦合 LIO 系统的主要流程 4.1 IMU 静止初始化 4.2 ESKF 之 运动过程——使用 IMU 预测 4.3 使用 IMU 预测位姿进…...

基于spingbott+html+Thymeleaf的24小时智能服务器监控平台设计与实现
博主介绍:硕士研究生,专注于信息化技术领域开发与管理,会使用java、标准c/c等开发语言,以及毕业项目实战✌ 从事基于java BS架构、CS架构、c/c 编程工作近16年,拥有近12年的管理工作经验,拥有较丰富的技术架…...

全栈面试(一)Basic/微服务
文章目录 项目地址一、Basic InterviewQuestions1. tell me about yourself?2. tell me about a time when you had to solve a complex code problem?3. tell me a situation that you persuade someone at work?4. tell me a about a confict with a teammate and how you…...
python安装完成后可以进行的后续步骤和注意事项
安装Python3完成后,你可以开始使用它进行编程和开发。以下是一些安装完成后可以进行的后续步骤和注意事项: 验证安装 检查Python版本: 打开“终端”应用程序。输入python3 --version,应该显示安装的Python3版本号。 检查pip版本…...

[Qt] 窗口 | 菜单栏MenuBar
目录 QMainWindow 概述 一、菜单栏 1、创建菜单栏 2、在菜单栏中添加菜单 3、创建菜单项 4、在菜单项之间添加分割线 5、添加快捷键 6、添加子菜单 7、添加图标 综合示例 QMainWindow 概述 Qt 窗口是通过 QMainWindow 类来实现的。 QMainWindow 是一个为用户 提供主…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
3403. 从盒子中找出字典序最大的字符串 I
3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...

【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

代码规范和架构【立芯理论一】(2025.06.08)
1、代码规范的目标 代码简洁精炼、美观,可持续性好高效率高复用,可移植性好高内聚,低耦合没有冗余规范性,代码有规可循,可以看出自己当时的思考过程特殊排版,特殊语法,特殊指令,必须…...