【机器学习:十九、反向传播】
1. 计算图和导数
计算图的概念
计算图(Computation Graph)是一种有向无环图,用于表示数学表达式中的计算过程。每个节点表示一个操作或变量,每条边表示操作的依赖关系。通过计算图,可以轻松理解和实现反向传播。
计算图的意义
- 直观地展示复杂计算过程。
- 支持自动微分,通过链式规则计算导数。
- 应用于神经网络中梯度的高效计算。
例如,对于函数 z = ( x + y ) ⋅ w z = (x + y) \cdot w z=(x+y)⋅w ,其计算图包括三个节点(加法、乘法、输入变量)和两条边。
2. 计算代价函数的偏导 - 单神经元
代价函数的定义
代价函数衡量模型输出与真实值之间的差距,例如平方误差:
L = 1 2 ( y − y ^ ) 2 L = \frac{1}{2} (y - \hat{y})^2 L=21(y−y^)2
其中, y ^ \hat{y} y^ 是模型输出, y y y 是目标值。
单神经元的导数推导
假设输出为 y ^ = σ ( w x + b ) \hat{y} = \sigma(wx + b) y^=σ(wx+b) ,其中 σ \sigma σ 是激活函数(如 Sigmoid),导数计算如下:
-
对于权重 w w w :
∂ L ∂ w = ∂ L ∂ y ^ ⋅ ∂ y ^ ∂ z ⋅ ∂ z ∂ w \frac{\partial L}{\partial w} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z} \cdot \frac{\partial z}{\partial w} ∂w∂L=∂y^∂L⋅∂z∂y^⋅∂w∂z -
对于偏置 b b b :
∂ L ∂ b = ∂ L ∂ y ^ ⋅ ∂ y ^ ∂ z ⋅ ∂ z ∂ b \frac{\partial L}{\partial b} = \frac{\partial L}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z} \cdot \frac{\partial z}{\partial b} ∂b∂L=∂y^∂L⋅∂z∂y^⋅∂b∂z
意义
通过计算偏导数,可以更新参数 w w w 和 b b b 以最小化损失函数。
3. 链导法则求导
链导法则是反向传播的核心,其定义如下:
∂ L ∂ x = ∂ L ∂ y ⋅ ∂ y ∂ x \frac{\partial L}{\partial x} = \frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial x} ∂x∂L=∂y∂L⋅∂x∂y
步骤:
- 先计算从输出到隐藏层的梯度。
- 再计算从隐藏层到输入的梯度。
例如,对于两层网络的损失函数 L = f ( g ( x ) ) L = f(g(x)) L=f(g(x)) ,使用链导法则:
∂ L ∂ x = ∂ f ∂ g ⋅ ∂ g ∂ x \frac{\partial L}{\partial x} = \frac{\partial f}{\partial g} \cdot \frac{\partial g}{\partial x} ∂x∂L=∂g∂f⋅∂x∂g
4. 过程解释
反向传播过程包括以下步骤:
- 前向传播:计算网络输出和损失函数。
- 反向传播:从输出层开始,逐层计算梯度。
- 更新参数:使用梯度下降或其变体更新参数。
假设两层网络的权重为 W 1 W_1 W1 和 W 2 W_2 W2 ,反向传播过程为:
-
计算输出层梯度 δ 2 \delta_2 δ2 :
δ 2 = ∂ L ∂ z 2 = ∂ L ∂ y ^ ⋅ σ ′ ( z 2 ) \delta_2 = \frac{\partial L}{\partial z_2} = \frac{\partial L}{\partial \hat{y}} \cdot \sigma'(z_2) δ2=∂z2∂L=∂y^∂L⋅σ′(z2) -
计算隐藏层梯度 δ 1 \delta_1 δ1 :
δ 1 = ( δ 2 ⋅ W 2 T ) ⋅ σ ′ ( z 1 ) \delta_1 = (\delta_2 \cdot W_2^T) \cdot \sigma'(z_1) δ1=(δ2⋅W2T)⋅σ′(z1) -
更新权重和偏置:
W 2 = W 2 − α ⋅ δ 2 ⋅ h 1 T W_2 = W_2 - \alpha \cdot \delta_2 \cdot h_1^T W2=W2−α⋅δ2⋅h1TW 1 = W 1 − α ⋅ δ 1 ⋅ x T W_1 = W_1 - \alpha \cdot \delta_1 \cdot x^T W1=W1−α⋅δ1⋅xT
5. 神经网络中的反向传播
多层网络中的反向传播
多层网络通过将链导法则逐层应用,从输出层反向传播至输入层。每层的梯度依赖于后一层的梯度。
实现代码示例
import numpy as np# 定义激活函数及其导数
def sigmoid(x):return 1 / (1 + np.exp(-x))def sigmoid_derivative(x):return sigmoid(x) * (1 - sigmoid(x))# 前向传播
x = np.array([1, 2]) # 输入
w1 = np.array([[0.1, 0.2], [0.3, 0.4]]) # 权重
b1 = np.array([0.5, 0.5]) # 偏置
z1 = np.dot(w1, x) + b1
a1 = sigmoid(z1)# 反向传播
delta = (a1 - 1) * sigmoid_derivative(z1)
grad_w1 = np.outer(delta, x)
6. 计算代价函数的偏导 - 两层神经网络
两层神经网络的反向传播在单层基础上扩展,每层分别计算:
∂ L ∂ W 1 , ∂ L ∂ W 2 , ∂ L ∂ b 1 , ∂ L ∂ b 2 \frac{\partial L}{\partial W_1}, \frac{\partial L}{\partial W_2}, \frac{\partial L}{\partial b_1}, \frac{\partial L}{\partial b_2} ∂W1∂L,∂W2∂L,∂b1∂L,∂b2∂L
总结与意义
反向传播是神经网络训练的核心,通过计算梯度并更新参数,使得网络能够有效学习复杂的映射关系,从而提高模型的泛化能力。
相关文章:
【机器学习:十九、反向传播】
1. 计算图和导数 计算图的概念 计算图(Computation Graph)是一种有向无环图,用于表示数学表达式中的计算过程。每个节点表示一个操作或变量,每条边表示操作的依赖关系。通过计算图,可以轻松理解和实现反向传播。 计算…...
线形回归与小批量梯度下降实例
1、准备数据集 import numpy as np import matplotlib.pyplot as pltfrom torch.utils.data import DataLoader from torch.utils.data import TensorDataset######################################################################### #################准备若干个随机的x和…...
SpringCloud微服务:基于Nacos组件,整合Dubbo框架
dubbo和fegin的差异 一、Feign与Dubbo概述 Feign是一个声明式的Web服务客户端,使得编写HTTP客户端变得更简单。通过简单的注解,Feign将自动生成HTTP请求,使得服务调用更加便捷。而Dubbo是一个高性能、轻量级的Java RPC框架,提供了…...
Golang 简要概述
文章目录 1. Golang 的学习方向2. Golang 的应用领域2.1 区块链的应用开发2.2 后台的服务应用2.3 云计算/云服务后台应用 1. Golang 的学习方向 Go 语言,我们可以简单的写成 Golang 2. Golang 的应用领域 2.1 区块链的应用开发 2.2 后台的服务应用 2.3 云计算/云服…...
web前端第三次作业---制作可提交的用户注册表
制作可提交的用户注册表: 代码: <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</tit…...
教育邮箱的魔力:免费获取Adobe和JetBrains软件
今天想和大家聊聊一个超级实用的话题——如何利用Edu教育邮箱来免费获取Photoshop等Adobe系列软件,以及JetBrains的各种开发工具。 Edu邮箱的价值 首先,Edu邮箱真的是个宝藏!如果你在学校或教育机构注册过,通常会获得一个这样的…...
sympy常用函数与错误笔记
文章目录 前言一、sympy基本函数介绍变量定义1. sp.Symbol("x") 或 sp.symbols("m n")2. sp.Function("y")3. func(x).diff(x, n) 定义方程与求解符号1. sp.Eq(lhs, rhs)2. 求解函数(*代表了常用且重要,其他部分作为拓展&…...
47_Lua文件IO操作
文件I/O(Input/Output)操作在Lua中用于与外部文件进行交互,包括读取文件中的数据和将数据写入文件。Lua提供了两种模式来进行文件操作:简单模式和完全模式。下面将详细介绍这两种模式的基本使用。 1.简单模式 1.1 简单模式介绍 简单模式提供了基本的文件操作功能,它主要…...
nginx-lua模块处理流程
一. 简述: nginx的模块化设计使得每一个http模块可以只专注于完成一个独立的,简单的功能。一个请求的完整处理过程可以由多个http模块共同协作完成,这种设计具有简单性,测试性,扩展性,灵活性。关于nginx 的…...
【大数据】机器学习-----最开始的引路
以下是关于机器学习的一些基本信息,包括基本术语、假设空间、归纳偏好、发展历程、应用现状和代码示例: 一、基本术语 样本(Sample): 也称为实例(Instance)或数据点(Data Point&…...
【前端】自学基础算法 -- 21.图的广度优先搜索
图的广度优先搜索 简介 图的广度优先搜索,沿着图的宽度遍历图的节点,先访问离起始节点最近的节点,然后逐渐向外扩展。 基本步骤: 选择一个起始节点作为当前节点。将当前节点加入队列。当队列不为空时,重复以下步骤…...
ChatGPT与Claude AI:两大生成式对话模型的比较分析
自ChatGPT推出以来,这款强大的AI聊天机器人迅速吸引了全球的关注。其出色的对话能力和多样化的应用场景,成为许多人初次体验基于大规模语言模型的潜力。然而,在这个快速发展的领域中,另一款AI也在悄然崭露头角,那就是由…...
前端开发:盒子模型、块元素
1.border边框 *{box-sizing:border-box; } //使所有边框不再撑大盒子模型 粗细 : border-width 样式 : border-style, 默认没边框 . solid 实线边框 dashed 虚线边框 dotted 点线边框 颜色 : border-color div { width : 200px ; height : 200px ; border : …...
升级 CentOS 7.x 系统内核到 4.4 版本
问题描述 在 CentOS 7.x 系统中,默认内核版本是 3.10.x,这个版本可能会带来一些与 Docker 和 Kubernetes 兼容性的问题,导致系统性能不稳定或功能异常。为了提高系统的稳定性和兼容性,建议升级到更高版本的内核,例如 …...
播放音频文件同步音频文本
播放音频同步音频文本 对应单个文本高亮显示 使用audio音频文件对应音频文本资源 音频文本内容(Json) [{"end": 4875,"index": 0,"speaker": 0,"start": 30,"text": "70号二啊,","tex…...
springboot使用Easy Excel导出列表数据为Excel
springboot使用Easy Excel导出列表数据为Excel Easy Excel官网:https://easyexcel.opensource.alibaba.com/docs/current/quickstart/write 主要记录一下引入时候的pom,直接引入会依赖冲突 解决方法: <!-- 引入Easy Excel的依赖 -->&l…...
day07_Spark SQL
文章目录 day07_Spark SQL课程笔记一、今日课程内容二、Spark SQL函数定义(掌握)1、窗口函数2、自定义函数背景2.1 回顾函数分类标准:SQL最开始是_内置函数&自定义函数_两种 2.2 自定义函数背景 3、Spark原生自定义UDF函数3.1 自定义函数流程&#x…...
高性能现代PHP全栈框架 Spiral
概述 Spiral Framework 诞生于现实世界的软件开发项目是一个现代 PHP 框架,旨在为更快、更清洁、更卓越的软件开发提供动力。 特性 高性能 由于其设计以及复杂精密的应用服务器,Spiral Framework框架在不影响代码质量以及与常用库的兼容性的情况下&a…...
LeetCode - #182 Swift 实现找出重复的电子邮件
网罗开发 (小红书、快手、视频号同名) 大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等…...
《解锁鸿蒙Next系统人工智能语音助手开发的关键步骤》
在当今数字化时代,鸿蒙Next系统与人工智能的融合为开发者带来了前所未有的机遇,开发一款人工智能语音助手应用更是备受关注。以下是在鸿蒙Next系统上开发人工智能语音助手应用的关键步骤: 环境搭建与权限申请 安装开发工具:首先需…...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
Python ROS2【机器人中间件框架】 简介
销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...
【笔记】WSL 中 Rust 安装与测试完整记录
#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...
DingDing机器人群消息推送
文章目录 1 新建机器人2 API文档说明3 代码编写 1 新建机器人 点击群设置 下滑到群管理的机器人,点击进入 添加机器人 选择自定义Webhook服务 点击添加 设置安全设置,详见说明文档 成功后,记录Webhook 2 API文档说明 点击设置说明 查看自…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...
