当前位置: 首页 > news >正文

YOLOv5训练长方形图像详解

文章目录

  • YOLOv5训练长方形图像详解
    • 一、引言
    • 二、数据集准备
      • 1、创建文件夹结构
      • 2、标注图像
      • 3、生成标注文件
    • 三、配置文件
      • 1、创建数据集配置文件
      • 2、选择模型配置文件
    • 四、训练模型
      • 1、修改训练参数
      • 2、开始训练
    • 五、使用示例
      • 1、测试模型
      • 2、评估模型
    • 六、总结

YOLOv5训练长方形图像详解

在这里插入图片描述

一、引言

YOLOv5 是一种高效的目标检测算法,广泛应用于各种图像识别任务。然而,当处理长方形图像时,可能会遇到一些特殊问题,如图像尺寸不匹配、标注不准确等。本文将详细介绍如何在 YOLOv5 中训练长方形图像,确保模型能够准确地检测和识别目标。

二、数据集准备

1、创建文件夹结构

首先,需要在 YOLOv5 根目录下创建一个文件夹 VOCData,并在其中创建以下子文件夹:

  • images:存放待标注的图像文件(JPG格式)。
  • Annotations:存放标注后的文件(采用 XML 格式)。
VOCData/
├── images/         # 存放图像文件
├── Annotations/    # 存放标注文件

2、标注图像

使用在线标注工具如 MAKE SENSE 进行标注。标注完成后,将标注文件保存为 XML 格式,并存放在 Annotations 文件夹中。

3、生成标注文件

创建 voc_label.py 文件,将训练集、验证集、测试集生成 YOLO 格式的标注文件,并将数据集路径导入到 train.txtval.txt 文件中。代码如下:

import xml.etree.ElementTree as ET
import os
from os import getcwdsets = ['train', 'val', 'test']
classes = ["class1", "class2"]  # 根据实际情况修改类别名称def convert(size, box):dw = 1. / size[0]dh = 1. / size[1]x = (box[0] + box[1]) / 2.0 - 1y = (box[2] + box[3]) / 2.0 - 1w = box[1] - box[0]h = box[3] - box[2]return x * dw, y * dh, w * dw, h * dhdef convert_annotation(image_id):in_file = open('VOCData/Annotations/%s.xml' % (image_id), encoding='UTF-8')out_file = open('VOCData/labels/%s.txt' % (image_id), 'w')tree = ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').textcls = obj.find('name').textif cls not in classes or int(difficult) == 1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))b1, b2, b3, b4 = bif b2 > w:b2 = wif b4 > h:b4 = hb = (b1, b2, b3, b4)bb = convert((w, h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')in_file.close()out_file.close()wd = getcwd()
for image_set in sets:if not os.path.exists('VOCData/labels/'):os.makedirs('VOCData/labels/')image_ids = open('VOCData/ImageSets/Main/%s.txt' % (image_set)).read().strip().split()list_file = open('VOCData/dataSet_path/%s.txt' % (image_set), 'w')for image_id in image_ids:list_file.write(wd + '/VOCData/images/%s.jpg\n' % (image_id))convert_annotation(image_id)list_file.close()

三、配置文件

1、创建数据集配置文件

在 YOLOv5 目录下的 data 文件夹下新建一个 myvoc.yaml 文件,内容如下:

train: D:/Yolov5/yolov5/VOCData/dataSet_path/train.txt
val: D:/Yolov5/yolov5/VOCData/dataSet_path/val.txt# number of classes
nc: 2# class names
names: ["class1", "class2"]

确保路径和类别名称与实际情况一致。

2、选择模型配置文件

YOLOv5 有多种配置文件,如 yolov5s.yamlyolov5m.yamlyolov5l.yamlyolov5x.yaml。选择一个合适的配置文件,例如 yolov5x.yaml,并将其复制到 models 文件夹中,重命名为 ddjc_model.yaml,然后修改 nc 为实际的类别数。

四、训练模型

1、修改训练参数

train.py 文件中,找到 def parse_opt(known=False) 函数,修改训练参数。例如:

parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='yolov5x', help='initial weights path')
parser.add_argument('--cfg', type=str, default=ROOT / 'models/ddjc_model.yaml', help='model.yaml path')
parser.add_argument('--data', type=str, default=ROOT / 'data/myvoc.yaml', help='dataset.yaml path')
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--device', default='cuda', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')

2、开始训练

在终端中运行以下命令开始训练:

python train.py --img 640 --batch 16 --epochs 50 --data data/myvoc.yaml --cfg models/ddjc_model.yaml --weights yolov5x.pt --name ddjc_model

五、使用示例

1、测试模型

训练完成后,可以使用 detect.py 文件进行测试。例如:

python detect.py --weights runs/train/ddjc_model/weights/best.pt --img 640 --conf 0.25 --source data/images

2、评估模型

使用 val.py 文件评估模型性能:

python val.py --weights runs/train/ddjc_model/weights/best.pt --data data/myvoc.yaml --img 640

六、总结

本文详细介绍了如何在 YOLOv5 中训练长方形图像,包括数据集准备、标注、配置文件设置和模型训练。通过这些步骤,可以确保模型能够准确地检测和识别长方形图像中的目标。希望本文对您有所帮助。


版权声明:本博客内容为原创,转载请保留原文链接及作者信息。

参考文章

  • Yolov5训练自己的数据集(详细完整版)_yolov5缔宇-CSDN博客
  • 如何制作数据集并基于yolov5训练成模型并部署

相关文章:

YOLOv5训练长方形图像详解

文章目录 YOLOv5训练长方形图像详解一、引言二、数据集准备1、创建文件夹结构2、标注图像3、生成标注文件 三、配置文件1、创建数据集配置文件2、选择模型配置文件 四、训练模型1、修改训练参数2、开始训练 五、使用示例1、测试模型2、评估模型 六、总结 YOLOv5训练长方形图像详…...

【2025最新】Poe保姆级订阅指南,Poe订阅看这一篇就够了!最方便使用各类AI!

1.Poe是什么? Poe, 全称Platform for Open Exploration。 Poe本身并不提供基础的大语言模型,而是整合多个来自不同科技巨头的基于不同模型的AI聊天机器人,其中包括来自OpenAI的ChatGPT,Anthropic的Claude、Google的PaLM&#xf…...

type1-100,2 words

dish n.餐具、碟,盘子;菜肴、饭菜(指一顿餐食中的一道菜) kind of 稍微;有点 sort of 稍微;有点儿 smallish adj.有点小的 crack 敲碎/裂,敲开,砸开,砸碎;裂开…...

Leetcode 377. 组合总和 Ⅳ 动态规划

原题链接&#xff1a;Leetcode 377. 组合总和 Ⅳ 可参考官解 class Solution { public:int combinationSum4(vector<int>& nums, int target) {vector<int> dp(target 1);dp[0] 1;// 总和为 i 的元素组合的个数for (int i 1; i < target; i) {// 每次都…...

计算机网络(五)——传输层

一、功能 传输层的主要功能是向两台主机进程之间的通信提供通用的数据传输服务。功能包括实现端到端的通信、多路复用和多路分用、差错控制、流量控制等。 复用&#xff1a;多个应用进程可以通过同一个传输层发送数据。 分用&#xff1a;传输层在接收数据后可以将这些数据正确分…...

【SQL】进阶知识 -- 删除表的几种方法(包含表内单个字段的删除方法)

大家好&#xff01;欢迎来到本篇SQL进阶博客。如果你已经掌握了基础的SQL操作&#xff0c;接下来就让我们一起探索删除表的几种方法。删除表可能听起来有点危险&#xff0c;事实也是如此&#xff0c;所以在我们实际开发过程中&#xff0c;大多数时候我们都有数据的使用权限&…...

【搭建JavaEE】(3)前后端交互,请求响应机制,JDBC数据库连接

前后端交互 Apache Tomat B/S目前主流。 tomat包含2部分&#xff1a; apache容器 再认识servlet 抽象出的开发模式 项目创建配置 maven javaeetomcat 忽略一些不用的文件 webapp文件夹 HiServlet 这里面出现了webinfo&#xff0c;这个别删因为这个呢&#xff0c;是这这个这…...

项目概述、开发环境搭建(day01)

软件开发整体介绍 软件开发流程 第1阶段: 需求分析 需求规格说明书&#xff0c; 一般来说就是使用 Word 文档来描述当前项目的各个组成部分&#xff0c;如&#xff1a;系统定义、应用环境、功能规格、性能需求等&#xff0c;都会在文档中描述。产品原型&#xff0c;一般是通过…...

车联网安全--TLS握手过程详解

目录 1. TLS协议概述 2. 为什么要握手 2.1 Hello 2.2 协商 2.3 同意 3.总共握了几次手&#xff1f; 1. TLS协议概述 车内各ECU间基于CAN的安全通讯--SecOC&#xff0c;想必现目前多数通信工程师们都已经搞的差不多了&#xff08;不要再问FvM了&#xff09;&#xff1b;…...

【python】OpenCV—Extract Horizontal and Vertical Lines—Morphology

文章目录 1、功能描述2、代码实现3、效果展示4、完整代码5、参考 更多有趣的代码示例&#xff0c;可参考【Programming】 1、功能描述 基于 opencv-python 库&#xff0c;利用形态学的腐蚀和膨胀&#xff0c;提取图片中的水平或者竖直线条 2、代码实现 导入基本的库函数 im…...

Redis十大数据类型详解

Redis&#xff08;一&#xff09; 十大数据类型 redis字符串&#xff08;String&#xff09; string是redis最基本的类型&#xff0c;一个key对应一个value string类型是二进制安全的&#xff0c;意思是redis的string可以包含任何数据。例如说是jpg图片或者序列化对象 一个re…...

Open FPV VTX开源之betaflight配置

Open FPV VTX开源之betaflight配置 1. 源由2. 配置3. 总结4. 参考资料5. 补充 - 飞控固件版本 1. 源由 飞控嵌入式OSD - ardupilot配置使用betaflight配套OSD图片。 Choose correct font depending on Flight Controller SW. ──> /usr/share/fonts/├──> font_btfl…...

AT32 bootloader程序与上位机程序

从8051到stm32, 从串口下载到JLINK调试&#xff0c;从keil到arm-none-eabi-gcc,从"Hello wrold"到通信协议&#xff0c;一路起来已学会很多&#xff0c;是时候写一下bootloader了。 基本原理 单片机代码编译完后可以生成".hex"和".bin"文件&…...

数据结构与算法之栈: LeetCode 151. 反转字符串中的单词 (Ts版)

反转字符串中的单词 https://leetcode.cn/problems/reverse-words-in-a-string/ 描述 给你一个字符串 s &#xff0c;请你反转字符串中 单词 的顺序单词 是由非空格字符组成的字符串。s 中使用至少一个空格将字符串中的 单词 分隔开 返回 单词 顺序颠倒且 单词 之间用单个空…...

使用 configparser 读取 INI 配置文件

使用 configparser 读取 INI 配置文件 适合于读取 .ini 格式的配置文件。 配置文件示例 (config.ini): [DEFAULT] host localhost port 3306 [database] user admin password secret import configparser# 创建配置解析器 config configparser.ConfigParser()# 读取配…...

idea 自动导包,并且禁止自动导 *(java.io.*)

自动导包配置 进入 idea 设置&#xff0c;可以按下图所示寻找位置&#xff0c;也可以直接输入 auto import 快速定位到配置。 Add unambiguous imports on the fly&#xff1a;自动帮我们优化导入的包Optimize imports on the fly&#xff1a;自动去掉一些没有用到的包 禁止导…...

RK3588-NPU pytorch-image-models 模型编译测试

RK3588-NPU pytorch-image-models 模型编译测试 一.背景二.操作步骤1.下载依赖2.创建容器3.安装依赖4.创建脚本A.生成模型名列表B.生成ONNX模型C.生成RKNN模型D.批量测试脚本 一.背景 测试RK3588-NPU对https://github.com/huggingface/pytorch-image-models.git中模型的支持程…...

低代码从“产品驱动”向“场景驱动”转型,助力数字化平台构建

一、前言 在数字化时代的大潮中&#xff0c;从宏观层面来看&#xff0c;新技术的落地速度不断加快&#xff0c;各行各业的数字化进程呈现出如火如荼的态势。而从微观层面剖析&#xff0c;企业面临着行业格局快速变化、市场竞争日益激烈以及成本压力显著增强等诸多挑战。 据专…...

相加交互效应函数发布—适用于逻辑回归、cox回归、glmm模型、gee模型

在统计分析中交互作用是指某因素的作用随其他因素水平变化而变化&#xff0c;两因素共同作用不等于两因素单独作用之和(相加交互作用)或之积(相乘交互作用)。相互作用的评估是尺度相关的&#xff1a;乘法或加法。乘法尺度上的相互作用意味着两次暴露的综合效应大于&#xff08;…...

用gpg和sha256验证ubuntu.iso

链接 https://ubuntu.com/tutorials/how-to-verify-ubuntuhttps://releases.ubuntu.com/jammy/ 本文是2的简明版 sha256sum介绍 sha256sum -c SHA256SUMS 2>&1这段脚本的作用是验证文件的 SHA-256 校验和。具体来说&#xff0c;命令的各个部分含义如下&#xff1a; …...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 &#xff08;部分有免费额度&#x…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill

视觉语言模型&#xff08;Vision-Language Models, VLMs&#xff09;&#xff0c;为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展&#xff0c;机器人仍难以胜任复杂的长时程任务&#xff08;如家具装配&#xff09;&#xff0c;主要受限于人…...

【C++进阶篇】智能指针

C内存管理终极指南&#xff1a;智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...

为什么要创建 Vue 实例

核心原因:Vue 需要一个「控制中心」来驱动整个应用 你可以把 Vue 实例想象成你应用的**「大脑」或「引擎」。它负责协调模板、数据、逻辑和行为,将它们变成一个活的、可交互的应用**。没有这个实例,你的代码只是一堆静态的 HTML、JavaScript 变量和函数,无法「活」起来。 …...