当前位置: 首页 > news >正文

WOA-Transformer鲸鱼算法优化编码器时间序列预测(Matlab实现)

WOA-Transformer鲸鱼算法优化编码器时间序列预测(Matlab实现)

目录

    • WOA-Transformer鲸鱼算法优化编码器时间序列预测(Matlab实现)
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现WOA-Transformer鲸鱼算法优化编码器时间序列预测,运行环境Matlab2023b及以上;
2.excel数据,方便替换,可在下载区获取数据和程序内容。
3.优化参数为注意力机制头数、学习率、正则化系数,图很多,包括预测效果图、误差分析图、决定系数图。
4.data为数据集,输入输出单个变量,时间序列预测,main.m为主程序,运行即可,所有文件放在一个文件夹,运行环境为Matlab2023b及以上。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。可在下载区获取数据和程序内容。
6.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价;
注:程序和数据放在一个文件夹

程序设计

  • 完整源码和数据获取方式私信博主回复WOA-Transformer鲸鱼算法优化编码器时间序列预测(Matlab实现)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 4;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测%%  划分数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);[t_train, ps_output] = mapminmax(T_train,0,1);
t_test = mapminmax('apply',T_test,ps_output);%% 节点个数
inputnum  = size(p_train, 1); % 输入层节点数
hiddennum = 15;                % 隐藏层节点数
outputnum = size(t_train, 1); % 输出层节点数
% CSDN 机器学习之心

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

WOA-Transformer鲸鱼算法优化编码器时间序列预测(Matlab实现)

WOA-Transformer鲸鱼算法优化编码器时间序列预测(Matlab实现) 目录 WOA-Transformer鲸鱼算法优化编码器时间序列预测(Matlab实现)预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现WOA-Transformer鲸鱼算法优化编…...

dock 制作 python环境

报错 :Get "https://registry-1.docker.io/v2/": net/http: request canceled while waiting for connection (Client.Timeout exceeded while awaiting headers) 解决方法 配置加速地址 vim /etc/docker/daemon.json 添加以下内容 { "registry-mirror…...

2025第3周 | json-server的基本使用

目录 1. json-server是什么?2. json-server怎么用?2.1 安装2.2 创建db.json2.3 启动服务2.4 查看效果 3. 前端进行模拟交互3.1 创建demo.html3.2 创建demo.js 2025,做想做的事,读想读的书,持续学习,自律生活…...

Autodl转发端口,在本地机器上运行Autodl服务器中的ipynb文件

通过 SSH 隧道将远程端口转发到本地机器 输入服务器示例的SSH指令和密码,将远程的6006端口代理到本地 在服务器终端,激活conda虚拟环境 conda activate posecnnexport PYOPENGL_PLATFORMegljupyter notebook --no-browser --port6006 --allow-root从…...

flutter Get GetMiddleware 中间件不起作用问题

当使用 get: ^5.0.0-release-candidate-9.2.1最新版本时,中间件GetMiddleware各种教程都是让我们在redirect中实现,比如: overrideRouteSettings? redirect(String? route) {return RouteSettings(name: "/companyAuthIndexPage"…...

RabbitMQ(三)

RabbitMQ中的各模式及其用法 工作队列模式一、生产者代码1、封装工具类2、编写代码3、发送消息效果 二、消费者代码1、编写代码2、运行效果 发布订阅模式一、生产者代码二、消费者代码1、消费者1号2、消费者2号 三、运行效果四、小结 路由模式一、生产者代码二、消费者代码1、消…...

【Python】Python之locust压测教程+从0到1demo:基础轻量级压测实战(1)

文章目录 一、什么是Locust二、Locust 架构组成三、实战 Demo准备一个可调用的接口编写一个接口测试用例编写一个性能测试用例执行性能测试用例代码1、通过 Web UI 执行(GUI模式)2、通过命令行执行(非GUI模式) 小知识:…...

【JavaScript】基础内容,HTML如何引用JavaScript, JS 常用的数据类型

HTML 嵌入 Javascript 的方式 引入外部 js 文件 <head> <script Language "javaScript" src"index.js"/> </head>内部声明 <head> <script language"javascript">function hello(){alert("hello word&qu…...

vue使用自动化导入api插件unplugin-auto-import,避免频繁手动导入

‌unplugin-auto-import‌是一个现代的自动导入插件&#xff0c;旨在简化前端开发中的导入过程&#xff0c;减少手动导入的繁琐工作&#xff0c;提升开发效率。它支持多种构建工具&#xff0c;包括Vite、Webpack、Rollup和esbuild&#xff0c;并且可以与TypeScript配合使用&…...

在 C# 中的Lambda 表达式

在 C# 中&#xff0c;Lambda 表达式是用来定义匿名函数的一种简洁方式&#xff0c;通常用于简化代码&#xff0c;尤其是在 LINQ 查询、事件处理或方法作为参数的场景中。Lambda 表达式的语法如下&#xff1a; 基本语法 (parameters) > expression_or_statement_blockparam…...

奉加微PHY6230兼容性:部分手机不兼容

从事嵌入式单片机的工作算是符合我个人兴趣爱好的,当面对一个新的芯片我即想把芯片尽快搞懂完成项目赚钱,也想着能够把自己遇到的坑和注意事项记录下来,即方便自己后面查阅也可以分享给大家,这是一种冲动,但是这个或许并不是原厂希望的,尽管这样有可能会牺牲一些时间也有哪天原…...

32单片机综合应用案例——基于GPS的车辆追踪器(三)(内附详细代码讲解!!!)

困难不会永远存在&#xff0c;只要你勇于面对&#xff0c;坚持努力&#xff0c;就一定能够战胜一切困难。每一次挑战都是一次成长的机会&#xff0c;不要害怕失败&#xff0c;失败是成功之母。只有经历过失败&#xff0c;你才能更加明白自己的不足&#xff0c;并不断改进自己&a…...

45_Lua模块与包

Lua中的模块系统是该语言的一个重要特性,它允许开发者将代码分割成更小、更易于管理的部分。通过使用模块,你可以创建可重用的代码片段,并且可以降低代码间的耦合度。下面我将详细介绍Lua模块的基本概念、语法以及一些实际案例。 1.Lua模块 1.1 模块的基本概念 从Lua 5.1…...

深度学习电影推荐-CNN算法

文章目录 前言视频演示效果1.数据集环境配置安装教程与资源说明1.1 ML-1M 数据集概述1.1.1数据集内容1.1.2. 数据集规模1.1.3. 数据特点1.1.4. 文件格式1.1.5. 应用场景 2.模型架构3.推荐实现3.1 用户数据3.2 电影数据3.3 评分数据3.4 数据预处理3.5实现数据预处理3.6 加载数据…...

【Git 】探索 Git 的魔法——git am 与补丁文件的故事

在日常的开发协作中&#xff0c;你可能会遇到这样的场景&#xff1a;某位热心的小伙伴发来一份 .patch 文件&#xff0c;让你把某个问题修复合并到项目中。如果你不知道如何优雅地接收并应用这份补丁&#xff0c;那么这篇文章就是为你准备的&#xff01;让我们一起揭开 Git 的“…...

G1原理—5.G1垃圾回收过程之Mixed GC

大纲 1.Mixed GC混合回收是什么 2.YGC可作为Mixed GC的初始标记阶段 3.Mixed GC并发标记算法详解(一) 4.Mixed GC并发标记算法详解(二) 5.Mixed GC并发标记算法详解(三) 6.并发标记的三色标记法 7.三色标记法如何解决错标漏标问题 8.SATB如何解决错标漏标问题 9.重新梳…...

机器人传动力系统介绍

电驱动系统 无框力矩电机减速器&#xff1a;优点是功率密度高&#xff0c;可在有限空间产生大扭矩&#xff0c;使机器人关节运动有力灵活&#xff0c;如人形机器人四肢运动。缺点是系统复杂&#xff0c;成本高&#xff0c;减速器会降低传动效率.空心杯电机行星滚柱丝杆&#x…...

1161 Merging Linked Lists (25)

Given two singly linked lists L1​a1​→a2​→⋯→an−1​→an​ and L2​b1​→b2​→⋯→bm−1​→bm​. If n≥2m, you are supposed to reverse and merge the shorter one into the longer one to obtain a list like a1​→a2​→bm​→a3​→a4​→bm−1​⋯. For ex…...

内联变量(inline variables):在多个文件中共享全局常量

在 C17 中&#xff0c;引入了 内联变量&#xff08;inline variables&#xff09; 的概念&#xff0c;可以用于在多个文件中共享全局常量。内联变量允许在头文件中定义变量&#xff0c;而不会导致链接错误&#xff08;如重复定义&#xff09;。这种方式非常适合用于定义跨多个文…...

Jmeter进行http接口并发测试

目录&#xff1a; 1、Jmeter设置&#xff08;1&#xff09;设置请求并发数&#xff08;2&#xff09;设置请求地址以及参数&#xff08;3&#xff09;添加结果数 2、启动看结果 1、Jmeter设置 &#xff08;1&#xff09;设置请求并发数 &#xff08;2&#xff09;设置请求地址…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...