当前位置: 首页 > news >正文

算法(蓝桥杯)贪心算法5——删数问题的解题思路

问题描述

给定一个高精度的正整数 n(n≤1000 位),需要删除其中任意 s 个数字,使得剩下的数字按原左右顺序组成一个新的正整数,并且这个新的正整数最小。例如,对于数字 153748,删除 2 个数字后,最小的数是 1348。


解题思路

1. 贪心算法

要解决这个问题,我们可以使用贪心算法。贪心算法在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的。

2. 维护单调递增栈

我们可以通过维护一个单调递增的栈来实现这个目标。具体步骤如下:

2.1 初始化栈

创建一个空栈 stack,用于存储最终结果中的数字。

2.2 遍历每个数字

遍历输入的高精度正整数 n 的每一位数字 num

2.3 维护单调递增栈
  • 弹出条件:当栈不为空(stack),且还需要删除数字(s > 0),且栈顶元素大于当前数字(stack[-1] > num)时,弹出栈顶元素,并减少 s 的值。这样做的目的是尽可能地让结果数的高位更小,从而使得整个数更小。

  • 入栈操作:将当前数字 num 入栈。这一步是为了保留当前数字,以便后续继续判断。

2.4 处理剩余的删除操作

遍历结束后,如果 s 还大于0,说明原数是单调递增的。在这种情况下,直接去掉末尾的 s 个数字即可。因为从末尾去掉数字对结果数的影响最小。

2.5 拼接结果并处理前导0
  • 拼接结果:将栈中的数字拼接成一个字符串。

  • 处理前导0:使用 lstrip('0') 去掉前导0。如果去掉前导0后字符串为空(即原数删除后只剩下0),则返回 '0'

3. 示例解释

n = "153748"s = 2 为例,详细说明每一步的操作:

  1. 初始化栈stack = []

  2. 遍历每一位数字

    • num = '1':栈为空,直接入栈。stack = ['1']

    • num = '5':栈顶元素 '1' 小于 '5',直接入栈。stack = ['1', '5']

    • num = '3':栈顶元素 '5' 大于 '3',弹出 '5's 减1。stack = ['1']。然后 '3' 入栈。stack = ['1', '3']

    • num = '7':栈顶元素 '3' 小于 '7',直接入栈。stack = ['1', '3', '7']

    • num = '4':栈顶元素 '7' 大于 '4',弹出 '7's 减1。stack = ['1', '3']。然后 '4' 入栈。stack = ['1', '3', '4']

    • num = '8':栈顶元素 '4' 小于 '8',直接入栈。stack = ['1', '3', '4', '8']

  3. 遍历结束后s 为0,不需要再处理。

  4. 拼接结果并处理前导0''.join(stack).lstrip('0'),结果为 '1348'

最终结果为 '1348',这是删除2个数字后得到的最小数。

4. 代码实现

def min_number_after_delete(n, s):"""删除s个数字后得到的最小数:param n: 原始高精度正整数,字符串形式:param s: 需要删除的数字个数:return: 删除s个数字后得到的最小数,字符串形式"""stack = []# 遍历每个数字for num in n:# 当栈不为空且s大于0且栈顶元素大于当前数字时,弹出栈顶元素while stack and s > 0 and stack[-1] > num:stack.pop()s -= 1# 当前数字入栈stack.append(num)# 如果s还大于0,说明原数是单调递增的,直接去掉末尾的s个数字即可if s > 0:stack = stack[:-s]# 将栈中的数字拼接成字符串,并去掉前导0return ''.join(stack).lstrip('0') or '0'# 示例
n = "153748"
s = 2
print(min_number_after_delete(n, s))  # 输出:1348n = "1087"
s = 1
print(min_number_after_delete(n, s))  # 输出:87

5. 总结

通过维护一个单调递增的栈,我们可以有效地找到删除 s 个数字后得到的最小数。这种方法的时间复杂度为 O(n),其中 n 是输入数字的长度,因为每个数字最多只会被入栈和出栈一次。希望这个解释能帮助你更好地理解这个问题的解法。如果有任何疑问,欢迎继续提问。

相关文章:

算法(蓝桥杯)贪心算法5——删数问题的解题思路

问题描述 给定一个高精度的正整数 n(n≤1000 位),需要删除其中任意 s 个数字,使得剩下的数字按原左右顺序组成一个新的正整数,并且这个新的正整数最小。例如,对于数字 153748,删除 2 个数字后&a…...

数字孪生发展及应用

一、数字孪生的前世今生 (一)萌芽的种子:概念的首次提出 数字孪生的概念最早可追溯到 20 世纪 60 年代,美国国家航空航天局(NASA)在阿波罗计划中,为了训练宇航员和指挥控制人员,使用…...

MYSQL对表的增删改查

表的基本操作 创建表create table [if not exists] <tableName> (<columnName> <columnType> [constraints] [comment] , ...<columnName> <columnType> [constraints] [comment] ) ;删除表drop table [if exists] <tableName> ;…...

左神算法基础提升--4

文章目录 树形dp问题Morris遍历 树形dp问题 求解这个问题需要用到我们在基础班上学到的从节点的左子树和右子树上拿信息的方法。 求最大距离主要分为两种情况&#xff1a;1.当前节点参与最大距离的求解&#xff1b;2.当前节点不参与最大距离的求解&#xff1b; 1.当前节点参与最…...

【docker踩坑记录】

docker踩坑记录 踩坑记录(持续更新中.......)docker images 权限问题 踩坑记录(持续更新中…) docker images 权限问题 permission denied while trying to connect to the Docker daemon socket at unix:///var/run/docker.sock: Head "http://%2Fvar%2Frun%2Fdocker.s…...

CloudberryDB(四)并行执行

要查看CloudberryDB & Greenplum数据库的并行度配置&#xff0c;可以使用以下几种方法&#xff1a; ### 方法一&#xff1a;使用SHOW命令 在Greenplum数据库中&#xff0c;可以使用SHOW命令来查看当前的并行度配置。例如&#xff1a; sql SHOW gp_parallel_degree ; SH…...

LARGE LANGUAGE MODELS ARE HUMAN-LEVEL PROMPT ENGINEERS

题目 大型语言模型是人类级别的提示工程师 论文地址&#xff1a;https://arxiv.org/abs/2211.01910 项目地址&#xff1a;https://github.com/keirp/automatic_prompt_engineer 摘要 通过对自然语言指令进行调节&#xff0c;大语言模型 (LLM) 显示了作为通用计算机的令人印象深…...

rabbitmq安装延迟队列

在RabbitMQ中&#xff0c;延迟队列是一种特殊的队列类型。当消息被发送到此类队列后&#xff0c;不会立即投递给消费者&#xff0c;而是会等待预设的一段时间&#xff0c;待延迟期满后才进行投递。这种队列在多种场景下都极具价值&#xff0c;比如可用于处理需要在特定时间触发…...

Kubernetes (K8s) 入门指南

Kubernetes (K8s) 入门指南 什么是Kubernetes&#xff1f; Kubernetes&#xff0c;通常简称为 K8s&#xff08;因为从 “K” 到 “s” 之间有八个字符&#xff09;&#xff0c;是一个开源的容器编排平台&#xff0c;用于自动化部署、扩展和管理容器化应用程序。它最初由谷歌设…...

Python 调用 Ollama 库:本地大语言模型使用详解

ollama 是一个用于调用本地大语言模型&#xff08;Large Language Models&#xff0c;LLMs&#xff09;的 Python 库&#xff0c;旨在提供简单、高效的 API 接口&#xff0c;以便开发者能够方便地与本地的大语言模型进行交互。以下是关于如何在 Python 中使用 ollama 库的详细介…...

python matplotlib绘图,显示和保存没有标题栏和菜单栏的图像

目录 1. 使用plt.savefig保存无边框图形 2. 显示在屏幕上&#xff0c;并且去掉窗口的标题栏和工具栏 3. 通过配置 matplotlib 的 backend 和使用 Tkinter&#xff08;或其他图形库&#xff09; 方法 1&#xff1a;使用 TkAgg 后端&#xff0c;并禁用窗口的工具栏和标题栏 …...

无人机(Unmanned Aerial Vehicle, UAV)路径规划介绍

无人机&#xff08;Unmanned Aerial Vehicle, UAV&#xff09;是无人驾驶飞行器的简称。凭借其体积小巧、操作简便、生存能力强等诸多优势&#xff0c;无人机在军事、电力巡检、航空航天与科学研究等诸多领域得到了广泛应用。在执行任务时&#xff0c;无人机可搭载多种传感器设…...

python爬虫入门(实践)

python爬虫入门&#xff08;实践&#xff09; 一、对目标网站进行分析 二、博客爬取 获取博客所有h2标题的路由 确定目标&#xff0c;查看源码 代码实现 """ 获取博客所有h2标题的路由 """url "http://www.crazyant.net"import re…...

于灵动的变量变幻间:函数与计算逻辑的浪漫交织(下)

大家好啊&#xff0c;我是小象٩(๑ω๑)۶ 我的博客&#xff1a;Xiao Xiangζั͡ޓއއ 很高兴见到大家&#xff0c;希望能够和大家一起交流学习&#xff0c;共同进步。 这一节我们主要来学习单个函数的声明与定义&#xff0c;static和extern… 这里写目录标题 一、单个函数…...

python实现pdf转word和excel

一、引言   在办公中&#xff0c;我们经常遇收到pdf文件格式&#xff0c;因为pdf格式文件不易修改&#xff0c;当我们需要编辑这些pdf文件时&#xff0c;经常需要开通会员或收费功能才能使用编辑功能。今天&#xff0c;我要和大家分享的&#xff0c;是如何使用python编程实现…...

Pandas使用笔记

个人学习笔记 日期转换 索引日期格式&#xff1a;2023-09-12 15:00:00 转换为&#xff1a;2023-09-12 import pandas as pd# 假设你的 DataFrame 名为 df&#xff0c;索引是 2023-09-12 15:00:00 # 这里创建一个示例 DataFrame 用于演示 data {value: [1, 2, 3]} index pd…...

高等数学学习笔记 ☞ 定积分与积分公式

1. 定积分的基本概念 1.1 定积分的定义 1. 定义&#xff1a;设函数在闭区间上有界。在闭区间上任意插入若干个分点&#xff0c;即&#xff0c; 此时每个小区间的长度记作(不一定是等分的)。然后在每个小区间上任意取&#xff0c;对应的函数值为。 为保证每段的值(即矩形面积)无…...

wow-agent---task2使用llama-index创建Agent

一&#xff1a;创造俩个函数&#xff0c;multiply和add作为fuction calling被LLM当做工具来使用&#xff0c;实现计算一个简单的计算题&#xff1a; from llama_index.llms.ollama import Ollama from llama_index.core.agent import ReActAgent from llama_index.core.tools …...

RabbitMQ实现延迟消息发送——实战篇

在项目中&#xff0c;我们经常需要使用消息队列来实现延迟任务&#xff0c;本篇文章就向各位介绍使用RabbitMQ如何实现延迟消息发送&#xff0c;由于是实战篇&#xff0c;所以不会讲太多理论的知识&#xff0c;还不太理解的可以先看看MQ的延迟消息的一个实现原理再来看这篇文章…...

Oracle 拉链式merge sort join 原理

Oracle 拉链式Merge Sort Join 的原理&#xff0c;我用一个生活中的比喻来解释。 --- 比喻场景&#xff1a;匹配快递包裹和收件人 1. 快递包裹清单 想象我们有一个快递公司送货的包裹清单&#xff0c;清单按照收件人的邮编&#xff08;ZIP Code&#xff09;排序&#xff1a; …...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...