Pytorch使用教程(12)-如何进行并行训练?
在使用GPU训练大模型时,往往会面临单卡显存不足的情况。这时,通过多卡并行的形式来扩大显存是一个有效的解决方案。PyTorch主要提供了两个类来实现多卡并行:数据并行torch.nn.DataParallel(DP)和模型并行torch.nn.DistributedDataParallel(DDP)。本文将详细介绍这两种方法。
一、数据并行(torch.nn.DataParallel)
-
基本原理
数据并行是一种简单的多GPU并行训练方式。它通过多线程的方式,将输入数据分割成多个部分,每个部分在不同的GPU上并行处理,最后将所有GPU的输出结果汇总,计算损失和梯度,更新模型参数。

-
使用方法
使用torch.nn.DataParallel非常简单,只需要一行代码就可以实现。以下是一个示例:
import torch
import torch.nn as nn# 检查是否有多个GPU可用
if torch.cuda.device_count() > 1:print("Let's use", torch.cuda.device_count(), "GPUs!")# 将模型转换为DataParallel对象model = nn.DataParallel(model, device_ids=range(torch.cuda.device_count()))
- 优缺点
优点:代码简单,易于使用,对小白比较友好。
缺点:GPU会出现负载不均衡的问题,一个GPU可能占用了大部分负载,而其他GPU却负载较轻,导致显存使用不平衡。
二、模型并行(torch.nn.DistributedDataParallel)
-
基本原理
torch.nn.DistributedDataParallel(DDP)是一种真正的多进程并行训练方式。每个进程对应一个独立的训练过程,且只对梯度等少量数据进行信息交换。每个进程包含独立的解释器和GIL(全局解释器锁),因此可以充分利用多GPU的优势,实现更高效的并行训练。

-
使用方法
使用torch.nn.DistributedDataParallel需要进行一些额外的配置,包括初始化GPU通信方式、设置随机种子点、使用DistributedSampler分配数据等。以下是一个详细的示例:
初始化环境
import torch
import torch.distributed as dist
import argparsedef parse():parser = argparse.ArgumentParser()parser.add_argument('--local_rank', type=int, default=0)args = parser.parse_args()return argsdef main():args = parse()torch.cuda.set_device(args.local_rank)dist.init_process_group('nccl', init_method='env://')device = torch.device(f'cuda:{args.local_rank}')
设置随机种子点
import numpy as np# 固定随机种子点
seed = np.random.randint(1, 10000)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)使用DistributedSampler分配数据
python
Copy Code
from torch.utils.data.distributed import DistributedSamplertrain_dataset = ... # 你的数据集
train_sampler = DistributedSampler(train_dataset, shuffle=True)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=opts.batch_size, sampler=train_sampler
)
初始化模型
model = mymodel().to(device)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank])训练循环
python
Copy Code
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
criterion = nn.CrossEntropyLoss()for ep in range(total_epoch):train_sampler.set_epoch(ep)for inputs, labels in train_loader:inputs, labels = inputs.to(device), labels.to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()
- 优缺点
- 优点:每个进程对应一个独立的训练过程,显存使用更均衡,性能更优。
- 缺点:代码相对复杂,需要进行一些额外的配置。
三、对比与选择
- 对比
| 特点 | torch.nn.DataParallel | torch.nn.DistributedDataParallel |
|---|---|---|
| 并行方式 | 多线程 | 多进程 |
| 显存使用 | 可能不均衡 | 更均衡 |
| 性能 | 一般 | 更优 |
| 代码复杂度 | 简单 | 复杂 |
- 选择建议
- 对于初学者或快速实验,可以选择torch.nn.DataParallel,因为它代码简单,易于使用。
- 对于需要高效并行训练的场景,建议选择torch.nn.DistributedDataParallel,因为它可以充分利用多GPU的优势,实现更高效的训练。
四、小结
通过本文的介绍,相信读者已经对PyTorch的多GPU并行训练有了更深入的了解。在实际应用中,可以根据模型的复杂性和数据的大小选择合适的并行训练方式,并调整batch size和学习率等参数以优化模型的性能。希望这篇文章能帮助你掌握PyTorch的多GPU并行训练技术。
相关文章:
Pytorch使用教程(12)-如何进行并行训练?
在使用GPU训练大模型时,往往会面临单卡显存不足的情况。这时,通过多卡并行的形式来扩大显存是一个有效的解决方案。PyTorch主要提供了两个类来实现多卡并行:数据并行torch.nn.DataParallel(DP)和模型并行torch.nn.Dist…...
指针之旅:从基础到进阶的全面讲解
大家好,这里是小编的博客频道 小编的博客:就爱学编程 很高兴在CSDN这个大家庭与大家相识,希望能在这里与大家共同进步,共同收获更好的自己!!! 本文目录 引言正文(1)内置数…...
FPGA与ASIC:深度解析与职业选择
IC(集成电路)行业涵盖广泛,涉及数字、模拟等不同研究方向,以及设计、制造、封测等不同产业环节。其中,FPGA(现场可编程门阵列)和ASIC(专用集成电路)是两种重要的芯片类型…...
PostgreSQL 中进行数据导入和导出
在数据库管理中,数据的导入和导出是非常常见的操作。特别是在 PostgreSQL 中,提供了多种工具和方法来实现数据的有效管理。无论是备份数据,还是将数据迁移到其他数据库,或是进行数据分析,掌握数据导入和导出的技巧都是…...
SDL2基本的绘制流程与步骤
SDL2(Simple DirectMedia Layer 2)是一个跨平台的多媒体库,它为游戏开发和图形应用提供了一个简单的接口,允许程序直接访问音频、键盘、鼠标、硬件加速的渲染等功能。在 SDL2 中,屏幕绘制的流程通常涉及到窗口的创建、渲染目标的设置、图像的绘制、事件的处理等几个步骤。…...
面试-业务逻辑2
应用 给定2个数组a、b,若a[i] b[j],则记(i,j)为一个二元数组,求具体的二元数组及其个数。 实现 a input("请输入数组a的元素个数:") # print(a) a_list list(map(int, input("请输入数组a的元素,…...
HTML之拜年/跨年APP(改进版)
目录: 一:目录 二:效果 三:页面分析/开发逻辑 1.页面详细分析: 2.开发逻辑: 四:完整代码(不多废话) index.html部分 app.json部分 二:效果 三:页面…...
嵌入式硬件篇---ADC模拟-数字转换
文章目录 前言第一部分:STM32 ADC的主要特点1.分辨率2.多通道3.转换模式4.转换速度5.触发源6.数据对齐7.温度传感器和Vrefint通道 第二部分:STM32 ADC的工作流程:1.配置ADC2.启动ADC转换 第三部分:ADC转化1.抽样2.量化3.编码 第四…...
每打开一个chrome页面都会【自动打开F12开发者模式】,原因是 使用HBuilderX会影响谷歌浏览器的浏览模式
打开 HBuilderX,点击 运行 -> 运行到浏览器 -> 设置web服务器 -> 添加chrome浏览器安装路径 chrome谷歌浏览器插件 B站视频下载助手插件: 参考地址:Chrome插件 - B站下载助手(轻松下载bilibili哔哩哔哩视频)…...
Access数据库教案(Excel+VBA+Access数据库SQL Server编程)
文章目录: 一:Access基础知识 1.前言 1.1 基本流程 1.2 基本概念?? 2.使用步骤方法 2.1 表【设计】 2.1.1 表的理论基础 2.1.2 Access建库建表? 2.1.3 表的基本操作 2.2 SQL语句代码【设计】 2.3 窗体【交互】? 2.3.1 多方式创建窗体 2.3.2 窗体常用的控件 …...
09、PT工具用法
目录 1、PT工具原理 2、在线修改表结构 3、使用pt-query-diges分析慢查询 4、使用pt-kill来kill掉一些垃圾SQL 5、pt-table-checksum进行主从一致性排查和修复 6、pt-archiver进行数据归档 7、其他一些pt工具 1、PT工具原理 创建一张与原始表结构相同的临时表 然后对临时…...
华为OD机试E卷 --矩形相交的面积--24年OD统一考试(Java JS Python C C++)
文章目录 题目描述输入描述输出描述用例题目解析JS算法源码Java算法源码python算法源码题目描述 给出3组点坐标(x, y, w, h),-1000<x,y<1000,w,h为正整数。 (x,y, w, h)表示平面直角坐标系中的一个矩形:x, y为矩形左上角坐标点,w, h向右w,向下h。(X, y, w, h)表示x轴…...
C++ 内存分配和管理(八股总结)
C是如何做内存管理的(有哪些内存区域)? (1)堆,使用malloc、free动态分配和释放空间,能分配较大的内存; (2)栈,为函数的局部变量分配内存,能分配…...
如何使用 JSONP 实现跨域请求?
以下是使用 JSONP 实现跨域请求的步骤: 实现步骤: 1. 客户端设置 在客户端,你需要创建一个 <script> 标签,并将其 src 属性设置为跨域请求的 URL,并添加一个 callback 参数。这个 callback 参数将包含一个函数…...
【机器学习实战入门】基于深度学习的乳腺癌分类
什么是深度学习? 作为对机器学习的一种深入方法,深度学习受到了人类大脑和其生物神经网络的启发。它包括深层神经网络、递归神经网络、卷积神经网络和深度信念网络等架构,这些架构由多层组成,数据必须通过这些层才能最终产生输出。…...
Flowable 管理各业务流程:流程设计器 (获取流程模型 XML)、流程部署、启动流程、流程审批、流程挂起和激活、任务分配
文章目录 引言I 表结构主要表前缀及其用途核心表II 流程设计器(Flowable BPMN模型编辑器插件)Flowable-UIvue插件III 流程部署部署步骤例子:根据流程模型ID部署IV 启动流程启动步骤ACT_RE_PROCDEF:流程定义相关信息例子:根据流程 ID 启动流程V 流程审批审批步骤Flowable 审…...
Kafka 日志存储 — 日志索引
每个日志分段文件对应两个索引文件:偏移量索引文件用来建立消息偏移量到物理地址之间的映射;时间戳索引文件根据指定的时间戳来查找对应的偏移量信息。 1 日志索引 Kafka的索引文件以稀疏索引的方式构造消息的索引。它并不保证每个消息在索引文件中都有…...
【大模型】ChatGPT 高效处理图片技巧使用详解
目录 一、前言 二、ChatGPT 4 图片处理介绍 2.1 ChatGPT 4 图片处理概述 2.1.1 图像识别与分类 2.1.2 图像搜索 2.1.3 图像生成 2.1.4 多模态理解 2.1.5 细粒度图像识别 2.1.6 生成式图像任务处理 2.1.7 图像与文本互动 2.2 ChatGPT 4 图片处理应用场景 三、文生图操…...
OceanBase 社区年度之星专访:北控水务纪晓东,社区铁杆开发者
编者按:作为开源数据库,社区的发展和持续进步,来自于每一位贡献者的智慧与支持。2024年度,OceanBase社区特别设立了“年度之星”奖,以表彰和感谢在过去一年中,为社区发展作出突出贡献的朋友。 今日&#x…...
Docker 实现MySQL 主从复制
一、拉取镜像 docker pull mysql:5.7相关命令: 查看镜像:docker images 二、启动镜像 启动mysql01、02容器: docker run -d -p 3310:3306 -v /root/mysql/node-1/config:/etc/mysql/ -v /root/mysql/node-1/data:/var/lib/mysql -e MYS…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
Kafka入门-生产者
生产者 生产者发送流程: 延迟时间为0ms时,也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于:异步发送不需要等待结果,同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
