当前位置: 首页 > news >正文

《从入门到精通:蓝桥杯编程大赛知识点全攻略》(五)-数的三次方根、机器人跳跃问题、四平方和

本博客将详细探讨如何通过二分查找算法来解决这几个经典问题。通过几个实际的例子,我们将展示如何在这些问题中灵活应用二分查找,优化计算过程,并在面对大数据量时保持高效性。

目录

前言

数的三次方根

算法思路

代码如下

机器人跳跃问题

算法思路

代码如下

 四平方和

算法思路

 代码如下

总结


前言

本博客将详细探讨如何通过二分查找算法来解决这几个经典问题。通过几个实际的例子,我们将展示如何在这些问题中灵活应用二分查找,优化计算过程,并在面对大数据量时保持高效性。


数的三次方根

给定一个浮点数 n,求它的三次方根。

输入格式

共一行,包含一个浮点数 n。

输出格式

共一行,包含一个浮点数,表示问题的解。

注意,结果保留 6 位小数。

数据范围

−10000≤n≤10000

输入样例:

1000.00

输出样例:

10.000000

算法思路

这道题题很多思路。 这次主要通过二分来进行处理,锻加强二分的练习。设置两个double类型变量lleft = -10000,right = 10000;取中间值mid,当mid * mid * mid >= x的时候,说明右区间的值太大,在[left,mid]中寻找。如果mid * mid * mid < x,说明需要在(mid,right]区间里面找,最后的答案输出left或者right都可。(注意题目精度,结果要6位小数,那么循环判断的时候增加两位精度即1e-8即可)

代码如下

import java.io.*;public class Main {static PrintWriter pw = new PrintWriter(new OutputStreamWriter(System.out));static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));static StreamTokenizer st = new StreamTokenizer(br);public static void main(String[] args)throws Exception {double x = nextDouble();double left  = -10000;double right = 10000; while (right - left > 1e-8) { //1e-8表示的题目精度,随题目变化而变化,一般比所求答案高两个精度double mid = (left + right) / 2;if(mid * mid * mid >= x){right = mid;}else {left = mid;}}pw.printf("%.6f", right);pw.flush();}public static double nextDouble()throws Exception{st.nextToken();return (double)st.nval;}
}

机器人跳跃问题

机器人正在玩一个古老的基于 DOS 的游戏。

游戏中有 N+1 座建筑——从 0到 N 编号,从左到右排列。

编号为 0 的建筑高度为 0个单位,编号为 i 的建筑高度为 H(i) 个单位。

起初,机器人在编号为 0 的建筑处。

每一步,它跳到下一个(右边)建筑。

假设机器人在第 k 个建筑,且它现在的能量值是 E,下一步它将跳到第 k+1个建筑。

如果 H(k+1)>E,那么机器人就失去 H(k+1)−E 的能量值,否则它将得到 E−H(k+1)的能量值。

游戏目标是到达第 N 个建筑,在这个过程中能量值不能为负数个单位。

现在的问题是机器人至少以多少能量值开始游戏,才可以保证成功完成游戏?

输入格式

第一行输入整数 N。

第二行是 N 个空格分隔的整数,H(1),H(2),…,H(N) 代表建筑物的高度。

输出格式

输出一个整数,表示所需的最少单位的初始能量值上取整后的结果。

数据范围

1≤N,H(i)≤10^5

输入样例1:

5
3 4 3 2 4

算法思路

 根据图示的推论 可知,其实无论哪一种情况最后E能量的变化都为2*E-h(i);与此同时当我们发现,如果E满足题意,那么E1 >= E,那么E1也是满足题意的。此时答案E就具有的单调性。

根据图示的推论,那么我们就知道答案E的最大值一定不超过100000,最小值大于等于0;可以用二分的方式来进行计算。

用整型数组arr记录每个建筑的能量值,用整型变量n来记录建筑数,左边界left = 0;右边界right = 100000;当left < right时,开始循环,找到中间值mid = (left + right) / 2;然后检查此时的mid值是否符合要求;

检查函数check,传过来的值E能量,然后从1遍历到n,计算e = 2 * e - arr[i];然后判断此时的e是否小于0,小于0直接不符合要求,返回false;当e >= 100000时,相当于满足题意了,一定成功可以提前返回true。循环结束时,返回true,表示满足题意。

当判断mid为true时说明此时的区间(mid,right]区间内,一定是E的值比mid大,最后答案要的是mid的最小值,说明右区间不可能存在,故右边界左移即right = mid;当mid不合格,说明区间[left,mid]中所有的E都不符合题意,故正确答案一定在右区间,所以左区间右移即left = mid + 1;最后输出left即为最后的答案。

代码如下


import java.io.*;
public class Main {static PrintWriter pw = new PrintWriter(new OutputStreamWriter(System.out));static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));static StreamTokenizer st = new StreamTokenizer(br);static int N = 100010;static int[] arr = new int[N];static int n;public static void main(String[] args)throws Exception {n = nextInt();for (int i = 1; i <= n; i++) {arr[i] = nextInt();}int left = 0;int right =100000;while (left < right) {int mid = (left + right) / 2;if(check(mid)){right = mid;}else {left = mid + 1;}}pw.println(left);pw.flush();}public static boolean check(int e){for(int i = 1;i <= n;i++){e = e * 2 - arr[i];//只要大于等于e的最大值,那么必然符合条件if(e >= 100000){return true;}if(e < 0){return false;}}return true;}public static int nextInt()throws Exception {st.nextToken();return (int) st.nval;}
}

 四平方和

四平方和定理,又称为拉格朗日定理:

每个正整数都可以表示为至多 4 个正整数的平方和。

如果把 0 包括进去,就正好可以表示为 4 个数的平方和。

比如:

5=0^{2}+0^{2}+1^{2}+2^{2}

7 = 1^{2}+1^{2}+1^{2}+2^{2}

对于一个给定的正整数,可能存在多种平方和的表示法。

要求你对 4 个数排序:

0≤a≤b≤c≤d

并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法。

输入格式

输入一个正整数 N。

输出格式

输出4个非负整数,按从小到大排序,中间用空格分开。

数据范围

0<N<5*10^6

输入样例:

5

输出样例:

0 0 1 2

算法思路

暴力做法直接枚举前3个数a、b、c,最后一个d可以直接算d = \sqrt{n - a^{2}- b^{2}-c^{2}},因为d是算出来的,可能为小数,还需判断一下 d^{2} == n - a^{2}-b^{2}-c^{2},当条件成立是就是最后的答案。(但这道题枚举3层循环会超时。)

二分优化做法。

先枚举所有c、d的情况,然后将c、d、c*c+d*d 3个值存起来,再去枚举a、b的情况,然后将 t = n - a * a - b * b与对应的c*c+d*d做对比,找出正确的答案。

引入整型变量n才存储最后的结果,用两层循环来枚举c和d,用一类内部类Sum来存储c、d和sum(存储c*c+d*d);每枚举一个c和d,将3个值存储list列表。循环结束后,按照宿命从小到大,当sum相同时按照c从小到大,当c相同时按照d从小到大。

然后再用两次循环枚举a和b,用整型变量t来存储n - a * a - b * b;用二分来查找,左边界left0,右边界list列表的长度-1;当列表list中的下标为mid的sum >= t,此时说明答案在左区间,此时右边界左移right = mid;当list中的下标为mid的sum < t,说明答案在右区间且不包括下标为mid,所以左区间右移即left = mid + 1;最后list中的下标为left的sum等于t时,此时得到的a、b、c、d就是最后的答案。

 代码如下

暴力做法

public class 四平方和 {static PrintWriter pw = new PrintWriter(new OutputStreamWriter(System.out));static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));static StreamTokenizer st = new StreamTokenizer(br);static int n;public static void main(String[] args)throws Exception {n = nextInt();for(int a = 0; a * a <= n;a++){for(int b = 0;b * b + a * a <= n;b++){for(int c = b; c * c + b * b + a * a <= n;c++ ){int t = n - a * a - b * b - c * c;int d =(int) Math.sqrt(t);if(d * d == t){pw.println(a+" "+b+" "+c+" "+d);pw.flush();return;}}}}}public static int nextInt()throws Exception {st.nextToken();return (int)st.nval;}

 二分优化


import java.io.*;
import java.util.*;public class Main {static PrintWriter pw = new PrintWriter(new OutputStreamWriter(System.out));static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));static StreamTokenizer st = new StreamTokenizer(br);static List<Sum> list = new ArrayList();static int n;public static void main(String[] args)throws Exception {n = nextInt();for(int c = 0; c * c <= n;c++){for(int d = c;c * c + d * d <= n;d++){list.add(new Sum(c * c + d * d,c,d));}}//字典序排序 lambda表达式list.sort((sum1,sum2)->{if(sum1.sum != sum2.sum) return sum1.sum - sum2.sum;if(sum1.c != sum2.c) return sum1.c - sum2.c;return sum1.d - sum2.d;});for(int a = 0; a * a <= n;a++){for(int b = a;b * b + a * a <= n;b++){int t = n - a * a -b * b;int left = 0;int right = list.size() - 1;while(left < right){int mid = (left + right)/2;if(list.get(mid).sum >= t){right = mid;}else {left = mid + 1;}}if(list.get(left).sum == t){pw.println(a+" "+b+" "+list.get(left).c+" "+list.get(left).d);pw.flush();return;}}}pw.flush();}public static int nextInt()throws Exception {st.nextToken();return (int)st.nval;}
}
class Sum{int sum;//c^2 + d^2 = sumint c;int d;public Sum(int sum, int c, int d) {this.sum = sum;this.c = c;this.d = d;}
}

总结

二分查找不仅仅是一种简单的查找方法,它在很多复杂问题中都有着非常广泛的应用。掌握二分查找的技巧,将帮助我们在面对各种挑战时,能够快速并准确地找到答案。

相关文章:

《从入门到精通:蓝桥杯编程大赛知识点全攻略》(五)-数的三次方根、机器人跳跃问题、四平方和

本博客将详细探讨如何通过二分查找算法来解决这几个经典问题。通过几个实际的例子&#xff0c;我们将展示如何在这些问题中灵活应用二分查找&#xff0c;优化计算过程&#xff0c;并在面对大数据量时保持高效性。 目录 前言 数的三次方根 算法思路 代码如下 机器人跳跃问题…...

Java-数据结构-二叉树习题(2)

第一题、平衡二叉树 ① 暴力求解法 &#x1f4da; 思路提示&#xff1a; 该题要求我们判断给定的二叉树是否为"平衡二叉树"。 平衡二叉树指&#xff1a;该树所有节点的左右子树的高度相差不超过 1。 也就是说需要我们会求二叉树的高&#xff0c;并且要对节点内所…...

解锁面向对象编程:Python 类与对象详解

&#x1f3e0;大家好&#xff0c;我是Yui_&#x1f4ac; &#x1f351;如果文章知识点有错误的地方&#xff0c;请指正&#xff01;和大家一起学习&#xff0c;一起进步&#x1f440; &#x1f680;如有不懂&#xff0c;可以随时向我提问&#xff0c;我会全力讲解~ &#x1f52…...

国产编辑器EverEdit -重复行

1 重复行 1.1 应用场景 在代码或文本编辑过程中&#xff0c; 经常需要快速复制当前行&#xff0c;比如&#xff0c;给对象的多个属性进行赋值。传统的做法是&#xff1a;选中行-> 复制-> 插入新行-> 粘贴&#xff0c;该操作有4个步骤&#xff0c;非常繁琐。 那有没…...

记一次数据库连接 bug

整个的报错如下&#xff1a; com.mysql.jdbc.exceptions.jdbc4.MySQLNonTransientConnectionException: Could not create connection to database server. Attempted reconnect 3 times. Giving up. at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Metho…...

【Springboot相关知识】Springboot结合SpringSecurity实现身份认证以及接口鉴权

Springboot结合SpringSecurity实现身份认证以及接口鉴权 身份认证1. 添加依赖2. 配置JWT工具类3. 配置Spring Security4. 创建JWT请求过滤器5. 创建认证控制器6. 创建请求和响应对象7. 配置UserDetailsService8. 运行应用程序9. 测试总结 接口鉴权1. 启用方法级安全注解2. 定义…...

算法竞赛之差分进阶——等差数列差分 python

目录 前置知识进入正题实战演练 前置知识 给定区间 [ l, r ]&#xff0c;让我们把数组中的[ l, r ] 区间中的每一个数加上c,即 a[ l ] c , a[ l 1 ] c , a[ l 2] c , a[ r ] c; 怎么做&#xff1f;很简单&#xff0c;差分一下即可 还不会的小伙伴点此进入学习 进入正题 …...

20250121在Ubuntu20.04.6下使用Linux_Upgrade_Tool工具给荣品的PRO-RK3566开发板刷机

sudo upgrade_tool uf update.img 20250121在Ubuntu20.04.6下使用Linux_Upgrade_Tool工具给荣品的PRO-RK3566开发板刷机 2025/1/21 11:54 百度&#xff1a;ubuntu RK3566 刷机 firefly rk3566 ubuntu upgrade_tool烧写详解 https://wiki.t-firefly.com/Core-3566JD4/03-upgrad…...

【Elasticsearch】Springboot编写Elasticsearch的RestAPI

RestAPI 初始化RestClient创建索引库Mapping映射 判断索引库是否存在删除索引库总结 ES官方提供了各种不同语言的客户端&#xff0c;用来操作ES。这些客户端的本质就是组装DSL语句&#xff0c;通过http请求发送给ES。 官方文档地址 由于ES目前最新版本是8.8&#xff0c;提供了全…...

Python数据可视化(够用版):懂基础 + 专业的图表抛给Tableau等专业绘图工具

我先说说文章标题中的“够用版”啥意思&#xff0c;为什么这么写。 按照我个人观点&#xff0c;在使用Python进行数据分析时&#xff0c;我们有时候肯定要结合到图表去进行分析&#xff0c;去直观展现数据的规律和特定&#xff0c;那么我们肯定要做一些简单的可视化&#xff0…...

1.21学习

misc buuctf-爱因斯坦 下载附件后是一个图片&#xff0c;用stegsolve查看一下&#xff0c;各个色都没有问题&#xff0c;然后看一下数据分析&#xff0c;除此之外无其他信息&#xff0c;再看看图片属性&#xff0c;不知道是啥&#xff0c;用随波逐流进行binwalk文件提取然后得…...

SoftGNSS软件接收机源码阅读(一)程序简介、运行调试、执行流程

原始 Markdown文档、Visio流程图、XMind思维导图见&#xff1a;https://github.com/LiZhengXiao99/Navigation-Learning 文章目录 一、softGNSS 简介1、概述2、相关工作3、我用 softGNSS 做的事4、文件结构5、程序执行流程图 二、程序使用1、射频前端2、参数设置3、处理开源数据…...

Spring Boot AOP实现动态数据脱敏

依赖&配置 <!-- Spring Boot AOP起步依赖 --> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-aop</artifactId> </dependency>/*** Author: 说淑人* Date: 2025/1/18 23:03* Desc…...

Leetcode刷题-二分查找

灵神的二分视频&#xff1a;二分查找 红蓝染色法_哔哩哔哩_bilibili 34 class Solution:def searchRange(self, nums: List[int], target: int) -> List[int]:right len(nums) - 1left 0res [-1,-1]mid int((right left)/2)while right > left:if nums[mid] < …...

凭证Account Assignment的校验(FAGL_VALIDATE)

本文主要介绍在S4 HANA OP中凭证Account Assignment的校验配置。具体请参照如下内容&#xff1a; 目录 1. 定义Account Assignment校验策略(FAGL_VALIDATE) 1.1 Derivation Rule 1.2 Assignment 1.3 Initialize 1.4 Enhancement 2. 分配Account Assignment校验策略给公司…...

【20】Word:小许-质量管理-论文❗

目录 题目​ NO1.2.3.4.5 NO6.7 NO8 NO9 NO10.11 题目 NO1.2.3.4.5 另存为“Word.docx”文件在考生文件夹下&#xff0c;F12Fn是另存为的作用布局→页面设置对话框→纸张&#xff1a;大小A4→页边距&#xff1a;上下左右不连续ctrl选择除表格外的所有内容→开始→字体对…...

二十八、Qos服务质量

Qos服务质量 一、产生原因 Resources也不是万能的,使用一段时间后,资源总量可能会超过接节点配置。 根据这个情况,我们可以设置,清除资源。给pod配置,按顺序删除 二、服务质量QoS分类 Guaranteed:最高服务质量(保证),当宿主机内存不够时,会先kill掉QoS为BestEffort…...

Flutter 改完安卓 applicationId 后App 闪退问题。

一、问题 当我们项目创建完&#xff0c;想 build.gradle 改 applicationId 的时候&#xff0c;再次执行的时候可能会出现 app 闪退问题&#xff0c; 控制台不显示任何错误提示 也不出现 Exit 停止运行的情况。&#xff08;像下方这样&#xff0c; 而 app 只是在模拟器中一闪而…...

es 3期 第25节-运用Rollup减少数据存储

#### 1.Elasticsearch是数据库&#xff0c;不是普通的Java应用程序&#xff0c;传统数据库需要的硬件资源同样需要&#xff0c;提升性能最有效的就是升级硬件。 #### 2.Elasticsearch是文档型数据库&#xff0c;不是关系型数据库&#xff0c;不具备严格的ACID事务特性&#xff…...

小菜鸟系统学习Python第三天

1.优先级问题: 结论: 幂运算>正负号>加减乘除和整除>比较运算符>逻辑运算符 2.三元运算符 3.assert断言:抛出AssertionError异常 4.for循环 4. 5.break和continue...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...