ComfyUI实现老照片修复——AI修复老照片(ComfyUI-ReActor / ReSwapper)尚待完善
AI修复老照片,试试吧,不一定好~~哈哈
2023年4月曾用过ComfyUI,当时就感慨这个工具和虚幻的蓝图很像,以后肯定是专业人玩的。
2024年我写代码去了,AI做图没太关注,没想到,现在ComfyUI真的变成了工作室必备之物。
comfyui的安装方法当年就写在这里了,不再赘述。
《Windows安装Stable Diffusion ComfyUI及问题解决记录(注意不是Stable Diffusion WebUI)》
如果你要学习的话,建议先用WebUI,然后再学ComfyUI,这样会比较容易理解流程和节点。
本文流程参考:https://openart.ai/workflows/whale_harmful_43/old-photo-reimagine—restoration/zCDY2MxghuM1ZZp1wx6M
1. 下载
常用的节点和模型太多,不在此处记录。需要你根据错误提示自行寻找所需内容。
-
节点:
- https://github.com/Gourieff/ComfyUI-ReActor
- https://github.com/somanchiu/ReSwapper
-
模型:
-
https://huggingface.co/datasets/Gourieff/ReActor/tree/main/models
最重要的是facerestore_models目录下模型和inswapper_128.onnx

-
https://huggingface.co/lllyasviel/ControlNet/tree/main/models
ControlNet如果已经安装可以不必考虑,但必须要存在depth、lineart和openpose模型。
-
2. 解压
-
节点:
-
custom_nodes/ComfyUI-ReActor

-
custom_nodes/ReSwapper

-
-
模型:
-
models\reswapper

-
models\facerestore_models

-
models\ControlNet
我的ComfyUI中的ControlNet引用到了WebUI中,你在配置时也需注意这一点。

-
3. 工作流
根据需要拖出节点


4. 配置


5. 出图
需要找到适合中国人的checkpoint,现在出图不是很好。

6. 问题

如果出现这个错误提示,那么问题出在 transformers.models.timm_wrapper 模块中,该模块依赖了 timm 库,但当前版本的 timm 中似乎缺少 ImageNetInfo,导致导入失败。
试试用命令升级或安装缺失的timm
pip install --upgrade transformers
pip install --upgrade timm
安装过程让我深深崩溃,还是一句话:AI尚未成熟,任重道远。
参考:
ComfyUI Reactor Node 安装和配置指南
相关文章:
ComfyUI实现老照片修复——AI修复老照片(ComfyUI-ReActor / ReSwapper)尚待完善
AI修复老照片,试试吧,不一定好~~哈哈 2023年4月曾用过ComfyUI,当时就感慨这个工具和虚幻的蓝图很像,以后肯定是专业人玩的。 2024年我写代码去了,AI做图没太关注,没想到,现在ComfyUI真的变成了工…...
NLTK命名实体识别(NER)
命名实体识别(Named Entity Recognition, NER)是自然语言处理(NLP)中的一项核心技术,旨在从文本中识别出具有特定意义的实体,如人名、地名、组织名等。通过对文本的自动化处理,NER能够帮助计算机理解和组织大量的非结构化数据,为信息抽取、搜索引擎优化、数据分析等领域…...
【游戏设计原理】78 - 持续注意力
这个原理指出,人类的注意力通常只能维持7至10分钟,因此游戏设计需要根据这一规律进行优化。具体建议包括: 短时间段设计:将游戏体验分解成7到10分钟的任务或场景,以符合玩家的注意力节奏。引入新刺激:在注…...
Android设备:Linux远程lldb调试
更多内容:XiaoJ的知识星球 目录 一、环境准备1.1 安装llvm/NDK1.2 开启lldb-server服务1.3 lldb连接lldb-server 二、使用lldb调试Android native源码2.1 运行调试2.2 .lldbinit文件 下面介绍Android设备(Android手机为例),在Linu…...
多层 RNN原理以及实现
数学原理 多层 RNN 的核心思想是堆叠多个 RNN 层,每一层的输出作为下一层的输入,从而逐层提取更高层次的抽象特征。 1. 单层 RNN 的数学表示 首先,单层 RNN 的计算过程如下。对于一个时间步 t t t,单层 RNN 的隐藏状态 h t h_t…...
[Computer Vision]实验三:图像拼接
目录 一、实验内容 二、实验过程及结果 2.1 单应性变换 2.2 RANSAC算法 三、实验小结 一、实验内容 理解单应性变换中各种变换的原理(自由度),并实现图像平移、旋转、仿射变换等操作,输出对应的单应性矩阵。利用RANSAC算法优…...
【Vim Masterclass 笔记22】S09L40 + L41:同步练习11:Vim 的配置与 vimrc 文件的相关操作(含点评课内容)
文章目录 S09L40 Exercise 11 - Vim Settings and the Vimrc File1 训练目标2 操作指令2.1. 打开 vimrc-sample 文件2.2. 尝试各种选项与设置2.3. 将更改内容保存到 vimrc-sample 文件2.4. 将文件 vimrc-sample 的内容复制到寄存器2.5. 创建专属 vimrc 文件2.6. 对于 Mac、Linu…...
5.9 洞察 OpenAI - Translator:日志(Logger)模块的 “时光记录仪”
洞察 OpenAI - Translator:日志(Logger)模块的 “时光记录仪” 在开发和生产环境中,日志记录是确保应用程序正常运行和快速调试的核心机制之一。日志模块(Logger)用于记录应用程序的运行信息,包括错误、警告、调试信息、信息性事件等。通过日志,开发者可以实时监控程序…...
客户案例:电商平台对帐-账单管理(亚马逊amazon)
账单管理: 功能定义: 账单管理用于上传亚马逊(amazon)平台下载的原始账单数据,美国站、日本站、墨西哥站等账单模板直接进行数据上传,做到0调整,下载下来的账单数据无缝上传至对账平台-账单管…...
IP协议特性
在网络层中,最重要的协议就是IP协议,IP协议也有两个特性,即地址管理和路由选择。 1、地址管理 由于IPv4地址为4个字节,所以最多可以支持42亿个地址,但在现在,42亿明显不够用了。这就衍生出下面几个机制。…...
Kubernetes入门学习
kubernetes技术架构模型 一、kubernetes的Label标签 1.标签是以keyvalue的格式通过用户自定义指定,目的是将其加入到各种资源对象上来实现多维度的资源分组管理使其更方便的进行资源分配、调度、配置和部署管理工作。 2.标签可以结合Label Selector(标签选择器)查询…...
支持向量机SVM的应用案例
支持向量机(Support Vector Machine,SVM)是一种强大的监督学习算法,广泛应用于分类和回归任务。 基本原理 SVM的主要目标是周到一个最优的超平面,该超平面能够将不同类别的数据点尽可能分开,并且使离该超平面最近的数…...
Chrome 132 版本新特性
Chrome 132 版本新特性 一、Chrome 132 版本浏览器更新 1. 在 iOS 上使用 Google Lens 搜索 在 Chrome 132 版本中,开始在所有平台上推出这一功能。 1.1. 更新版本: Chrome 126 在 ChromeOS、Linux、Mac、Windows 上:在 1% 的稳定版用户…...
(5)STM32 USB设备开发-USB键盘
讲解视频:2、USB键盘-下_哔哩哔哩_bilibili 例程:STM32USBdevice: 基于STM32的USB设备例子程序 - Gitee.com 本篇为使用使用STM32模拟USB键盘的例程,没有知识,全是实操,按照步骤就能获得一个STM32的USB键盘。本例子是…...
Linux 系统服务开机自启动指导手册
一、引言 在 Linux 系统中,设置服务开机自启动是常见的系统配置任务。本文档详细介绍了多种实现服务开机自启动的方法,包括 systemctl 方式、通用脚本方式、crontab 方案等,并提供了生产环境下的方案建议和开机启动脚本示例。 二、systemct…...
分布式多卡训练(DDP)踩坑
多卡训练最近在跑yolov10版本的RT-DETR,用来进行目标检测。 单卡训练语句(正常运行): python main.py多卡训练语句: 需要通过torch.distributed.launch来启动,一般是单节点,其中CUDA_VISIBLE…...
Codeforces Round 1000 (Div. 2)-C题(树上两个节点不同边数最大值)
https://codeforces.com/contest/2063/problem/C 牢记一棵树上两个节点如果相邻,它们有一条边会重叠,两个节点延伸出去的所有不同边是两个节点入度之和-1而不是入度之和,那么如果这棵树上有三个节点它们的入度都相同,那么优先选择非相邻的两个节点才能使所有不同边的数量最大!!…...
C++17 新特性解析:Lambda 捕获 this
C17 引入了许多改进和新特性,其中之一是对 lambda 表达式的增强。在这篇文章中,我们将深入探讨 lambda 表达式中的一个特别有用的新特性:通过 *this 捕获当前对象的副本。这个特性不仅提高了代码的安全性,还极大地简化了某些场景下…...
Spring Boot 使用 Micrometer 集成 Prometheus 监控 Java 应用性能
在Spring Boot中使用Micrometer集成Prometheus来监控Java应用性能是一种常见的做法。 一、Micrometer简介 Micrometer是一个开源的Java项目,主要用于为JVM应用程序提供监控和度量功能。以下是对Micrometer的详细介绍: 定义与功能 Micrometer是一个针…...
Spring Boot 事件驱动:构建灵活可扩展的应用
在 Spring Boot 应用中,事件发布和监听机制是一种强大的工具,它允许不同的组件之间以松耦合的方式进行通信。这种机制不仅可以提高代码的可维护性和可扩展性,还能帮助我们构建更加灵活、响应式的应用。本文将深入探讨 Spring Boot 的事件发布…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果的原因分类及对应排查方案
JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停 1. 安全点(Safepoint)阻塞 现象:JVM暂停但无GC日志,日志显示No GCs detected。原因:JVM等待所有线程进入安全点(如…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
Python常用模块:time、os、shutil与flask初探
一、Flask初探 & PyCharm终端配置 目的: 快速搭建小型Web服务器以提供数据。 工具: 第三方Web框架 Flask (需 pip install flask 安装)。 安装 Flask: 建议: 使用 PyCharm 内置的 Terminal (模拟命令行) 进行安装,避免频繁切换。 PyCharm Terminal 配置建议: 打开 Py…...
2025年- H71-Lc179--39.组合总和(回溯,组合)--Java版
1.题目描述 2.思路 当前的元素可以重复使用。 (1)确定回溯算法函数的参数和返回值(一般是void类型) (2)因为是用递归实现的,所以我们要确定终止条件 (3)单层搜索逻辑 二…...
GAN模式奔溃的探讨论文综述(一)
简介 简介:今天带来一篇关于GAN的,对于模式奔溃的一个探讨的一个问题,帮助大家更好的解决训练中遇到的一个难题。 论文题目:An in-depth review and analysis of mode collapse in GAN 期刊:Machine Learning 链接:...
