当前位置: 首页 > news >正文

Kafka 入门与应用实战:吞吐量优化与与 RabbitMQ、RocketMQ 的对比

前言

在现代微服务架构和分布式系统中,消息队列作为解耦组件,承担着重要的职责。它不仅提供了异步处理的能力,还能确保系统的高可用性、容错性和扩展性。常见的消息队列包括 Kafka、RabbitMQ 和 RocketMQ,其中 Kafka 因其高吞吐量、分布式特性和可靠性成为大规模数据流处理的首选。

本篇文章将深入介绍 Kafka 的基本概念、执行流程、吞吐量优化策略、生命周期,重点对比 Kafka 与 RabbitMQ 和 RocketMQ 的异同,最后演示如何在 Spring Boot 中使用 Kafka,并提供相应的代码示例与配置。


1. 什么是 Kafka?

Kafka 是一个高吞吐量、分布式的消息流平台,最初由 LinkedIn 开发,后来捐赠给 Apache 基金会。它的主要优势在于能处理大量的实时数据流,常用于日志聚合、流式处理和数据传输等场景。

1.1 Kafka 的核心组成

Kafka 的核心组件包括:

  • Producer(生产者):负责向 Kafka 中发送消息。例如,在一个电商系统中,订单创建后,订单数据会由生产者发送到 Kafka 中。
  • Consumer(消费者):从 Kafka 中拉取消息进行处理。比如,电商系统中的库存管理模块,会作为消费者从 Kafka 中获取订单消息,进而更新库存。
  • Broker(代理):Kafka 服务的节点,负责存储消息和分发消息。可以把 Broker 理解为一个仓库,消息在这里暂存和被分发。
  • Zookeeper:Kafka 集群的元数据和协调管理服务,保证 Kafka 集群的高可用性和一致性。Zookeeper 就像是一个指挥中心,协调着各个 Broker 的工作。

Kafka 集群的高可用性和横向扩展能力,允许 Kafka 能在大规模生产环境中运行,并提供强大的消息持久化和可靠性。

1.2 Kafka 核心概念

  • Topic(主题):消息的分类,生产者向主题发送消息,消费者从主题中接收消息。例如,在一个电商系统中,“订单消息” 可以作为一个 Topic,所有与订单相关的消息都发送到这个主题中。
  • Partition(分区):每个 Topic 可以划分成多个分区。分区使得 Kafka 可以水平扩展,并且增加并发处理能力。比如,按照不同地区(如华北、华南等)划分 Partition,这样可以并行处理不同地区的订单消息。
  • Offset(偏移量):每个消息在分区中的唯一标识,消费者根据 Offset 读取消息。Offset 就像是订单流水号,记录着消息在分区中的位置。
  • Replication(副本):Kafka 支持为每个分区设置副本数量,以保证高可用性。例如,订单消息在不同数据中心的备份就是副本,即使某个数据中心出现故障,其他副本也能保证数据不丢失。

2. Kafka 的执行流程与吞吐量优化

Kafka 的消息处理流程可以分为以下几个步骤:

2.1 生产者发送消息

  1. 连接 Kafka 集群:Kafka 生产者与 Kafka Broker 通过 TCP 连接。
  2. 选择分区:根据分区策略(例如轮询、哈希)选择目标分区。
  3. 消息传输与存储:生产者将消息发送到指定的 Broker,Broker 将消息存储到日志中。
  4. 消息确认:根据生产者的配置,Kafka 可以在消息成功写入磁盘后确认消息,或仅在消息被接收后确认。

2.2 消费者消费消息

  1. 订阅 Topic:消费者通过订阅 Topic,开始接收该主题中的消息。
  2. 拉取消息:消费者定期向 Kafka 请求消息,Kafka 返回符合消费者偏移量的消息。
  3. 确认偏移量:消费者可以显式或隐式地提交消息的偏移量,确保消息的准确消费。

2.3 吞吐量优化策略

Kafka 的高吞吐量来源于其设计架构和优化策略,以下是一些关键的优化方向:

2.3.1 分区与副本数

Kafka 通过将 Topic 划分为多个分区(Partition),实现数据的水平分布和并发处理。每个分区的消息是有序的,但跨分区的消息没有顺序保障。分区数越多,能够支持的消费者并发度也越高。副本数则保证了 Kafka 在单个节点故障时,依然能够保持数据的可用性和可靠性。

优化建议

  • 增加分区数:增加分区数可以提升 Kafka 的并发能力,尤其是在消费端和生产端之间的数据流动非常活跃时。例如,当电商促销活动期间,订单量剧增,增加分区数可以更好地处理大量订单消息。
  • 合理配置副本数:副本数的增加虽然提高了可靠性,但会带来更多的网络和存储压力。通常,副本数为 3 是一个常见的配置。
2.3.2 批量发送消息

Kafka 支持批量发送消息,生产者将多个消息一起发送到服务器,而不是一个消息一个消息地发送。批量发送减少了网络延迟和磁盘 I/O,从而提高了吞吐量。

优化建议
设置适当的 batch.sizelinger.ms 参数。batch.size 控制批次的最大大小,linger.ms 控制生产者等待时间。适当增加这些参数能够减少网络请求次数,提升吞吐量。例如:

Properties props = new Properties();
props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
props.put(ProducerConfig.LINGER_MS_CONFIG, 10);
// 其他配置...
KafkaProducer<String, String> producer = new KafkaProducer<>(props);
2.3.3 消息压缩

Kafka 支持消息压缩,生产者可以使用 GZIP、Snappy 或 LZ4 等压缩算法来减少消息的大小,进而提高网络带宽的利用率。

优化建议
开启压缩,尤其是在消息体较大的情况下,可以显著减少传输的流量。通过设置 compression.type 参数,可以选择适合的压缩算法。

2.3.4 消费者并发处理

Kafka 的消费者群组机制允许多个消费者并行消费消息。通过增加消费者的数量,可以提高消费速度。

优化建议
消费者的数量应当根据分区数来合理配置,消费者数量过多会导致某些消费者处于空闲状态,而过少则会影响消费效率。

2.3.5 Kafka 配置优化

Kafka 的一些配置项可以进一步提升系统的吞吐量:

  • acks 配置:生产者的 acks 配置决定了消息确认的策略。acks = 1 表示生产者等待 Leader 写入日志并返回确认即可,acks = all 则要求所有副本都写入日志。acks = 1 通常可以获得更高的吞吐量。
  • compression.type:启用消息压缩,如 snappy、gzip 等,减少网络传输开销。
  • buffer.memory:设置生产者端缓冲区的大小,影响消息的积压情况。

3. Kafka 与 RabbitMQ、RocketMQ 的对比

3.1 Kafka vs RabbitMQ

对比项KafkaRabbitMQ
架构设计采用分布式日志架构,每个主题(Topic)由多个分区组成,保证高吞吐量和数据可持久化采用 AMQP 协议,基于队列和交换机的模式,提供更多的消息传递功能(例如消息确认、路由)
吞吐量提供了更高的吞吐量,特别适合大数据、日志流等场景适用于低延迟和高可靠性的应用,但在高吞吐量场景下表现较差
使用场景适用于实时数据流处理、大数据流式计算等高吞吐量场景更适用于任务队列、消息分发、延时消息等应用

3.2 Kafka vs RocketMQ

对比项KafkaRocketMQ
架构设计基于分区和日志的存储,适用于海量数据的存储和流式传输基于主题和队列,支持事务消息和顺序消息,适用于金融等高可靠性要求的场景
吞吐量吞吐量通常比 RocketMQ 高,适合处理大量的实时数据流支持顺序消费和事务消息,对于对数据一致性要求较高的应用场景更为合适
使用场景更适合用于数据流处理、大规模日志聚合等适合于分布式事务、高可靠消息传递等场景

4. 在 Spring Boot 中使用 Kafka

4.1 Maven 依赖配置

首先,在 Spring Boot 项目中添加 Kafka 的依赖。在 pom.xml 中加入:

<dependencies><dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka</artifactId><version>2.8.0</version> <!-- 根据实际版本号调整 --></dependency>
</dependencies>

4.2 配置 Kafka

application.ymlapplication.properties 文件中配置 Kafka:

spring:kafka:bootstrap-servers: localhost:9092consumer:group-id: test-groupauto-offset-reset: earliestproducer:key-serializer: org.apache.kafka.common.serialization.StringSerializervalue-serializer: org.apache.kafka.common.serialization.StringSerializer

4.3 Kafka 生产者示例代码

@Service
public class KafkaProducer {private final KafkaTemplate<String, String> kafkaTemplate;// 这里的KafkaTemplate<String, String>是用于发送消息的模板类,它定义了发送消息的方式和相关配置public KafkaProducer(KafkaTemplate<String, String> kafkaTemplate) {this.kafkaTemplate = kafkaTemplate;}// sendMessage方法用于将消息发送到指定的主题public void sendMessage(String topic, String message) {kafkaTemplate.send(topic, message);}
}

4.4 Kafka 消费者示例代码

@Service
public class KafkaConsumer {// @KafkaListener注解表示该方法是一个Kafka消息监听器,监听指定的主题和组@KafkaListener(topics = "test-topic", groupId = "test-group")public void listen(String message) {System.out.println("Received message: " + message);}
}

4.5 启动 Spring Boot 应用

启动 Spring Boot 应用后,Kafka 生产者和消费者将自动处理消息的发送与接收。如果是本地环境,启动 Kafka 服务可以使用相应的命令行操作,例如在 Kafka 的安装目录下执行 bin/kafka-server-start.sh config/server.properties (Linux 或 macOS 系统)。如果连接失败,可能会出现如 “Connection refused” 等错误提示,此时需要检查 Kafka 服务是否正常运行、配置的连接地址和端口是否正确等。


5. 总结

  • Kafka 作为一款卓越的分布式流平台,在大数据处理和分布式系统领域有着举足轻重的地位 。它具备高吞吐量、分布式特性以及出色的可靠性,使其成为处理大规模实时数据流的不二之选。

  • 在基础概念方面,Kafka 拥有 Producer、Consumer、Broker 和 Zookeeper 等核心组件,这些组件相互协作,构建起了一个稳定且高效的消息处理体系。同时,Topic、Partition、Offset 和 Replication 等核心概念,是深入理解 Kafka 工作机制的关键。例如,Partition 实现了数据的水平扩展和并发处理,而 Replication 则确保了数据的高可用性。

  • 在执行流程上,生产者发送消息时,会经历连接 Kafka 集群、选择分区、传输存储以及消息确认等步骤;消费者消费消息则通过订阅 Topic、拉取消息以及确认偏移量来完成。这一过程看似简单,却蕴含着诸多内部机制,如生产者如何保证消息在分区内的顺序性,消费者显式和隐式提交偏移量的区别等,这些细节对于优化 Kafka 性能和保障消息准确处理至关重要。

  • 吞吐量优化是 Kafka 的一大亮点。通过合理调整分区与副本数、采用批量发送消息、开启消息压缩、优化消费者并发处理以及精细配置 Kafka 参数等策略,可以显著提升 Kafka 的性能。例如,增加分区数能提升并发能力,但要注意避免分区过多导致管理成本增加;批量发送消息和消息压缩可以有效减少网络延迟和带宽占用。

  • 与 RabbitMQ 和 RocketMQ 相比,Kafka 在架构设计、吞吐量和使用场景上各有特点。RabbitMQ 基于 AMQP 协议,侧重于消息传递功能和低延迟高可靠性;RocketMQ 支持事务消息和顺序消息,适用于对数据一致性要求极高的场景。而 Kafka 凭借其分布式日志架构和高吞吐量,在实时数据流处理和大规模日志聚合等方面表现出色。

  • 在实际应用中,通过在 Spring Boot 中集成 Kafka,可以轻松搭建高效的消息处理系统。从添加 Maven 依赖到配置 Kafka,再到编写生产者和消费者示例代码,每一步都为实现可靠的消息通信奠定了基础。

  • 总之,Kafka 的强大功能和广泛适用性,使其成为现代分布式系统中不可或缺的一部分。无论是处理海量数据的实时分析,还是构建高可靠的异步消息处理机制,Kafka 都能提供卓越的解决方案。随着技术的不断发展,Kafka 也将持续演进,为开发者带来更多的便利和创新。

相关文章:

Kafka 入门与应用实战:吞吐量优化与与 RabbitMQ、RocketMQ 的对比

前言 在现代微服务架构和分布式系统中&#xff0c;消息队列作为解耦组件&#xff0c;承担着重要的职责。它不仅提供了异步处理的能力&#xff0c;还能确保系统的高可用性、容错性和扩展性。常见的消息队列包括 Kafka、RabbitMQ 和 RocketMQ&#xff0c;其中 Kafka 因其高吞吐量…...

“推理”(Inference)在深度学习和机器学习的语境

“推理”&#xff08;Inference&#xff09;在深度学习和机器学习的语境中&#xff0c;是指使用经过训练的模型对新数据进行预测的过程。将其简单地理解为“模型的应用阶段”。在这一阶段&#xff0c;我们不再进行模型训练&#xff0c;而是利用已训练好且保存下来的模型来获取对…...

字节腾讯阿里大厂面经汇总:Java集合(容器)大厂面试题及参考答案

ArrayList 的扩容机制以及删除操作的时间复杂度 ArrayList 是 Java 中非常常用的一个集合类,它是基于数组实现的动态数组。当我们创建一个 ArrayList 时,如果不指定初始容量,它会有一个默认的初始容量(通常是 10)。当我们向 ArrayList 中添加元素时,如果元素的数量达到了…...

数据结构(初阶)(一)----算法复杂度

算法复杂度 算法复杂度数据结构算法算法效率复杂度的概念 数据结构 数据结构(Data Structure)是计算机存储、组织数据的⽅式&#xff0c;指相互之间存在⼀种或多种特定关系的数据元素的集合。没有⼀种单⼀的数据结构对所有⽤途都有⽤&#xff0c;所以我们要学各式各样的数据结…...

构建高效稳定的网络环境

概述 网络技术是当今IT行业的重要组成部分&#xff0c;构建高效稳定的网络环境对于企业、个人和互联网发展至关重要。本文将探讨网络技术中的关键要素&#xff0c;包括网络协议、网络架构、网络安全和网络优化&#xff0c;并提供实用的技巧和最佳实践&#xff0c;以帮助您构建…...

使用Edge打开visio文件

使用Edge打开visio文件 打开Edge浏览器搜索‘vsdx edge’ 打开第一个搜索结果 Microsoft Support 根据上述打开的页面进行操作 第一步&#xff1a;安装Visio Viewer 第二步&#xff1a;添加注册表 桌面新增文本文件&#xff0c;将下面的内容放入新建文本中&#xff0c;修…...

ChatGPT Prompt 编写指南

一、第一原则&#xff1a;明确的意图​ 你需要明确地表达你的意图和要求&#xff0c;尽可能具体、描述性、详细地描述所需的上下文、你期望的结果等。你的要求越明确&#xff0c;越有希望获得你想要的答案。​ 糟糕的案例 ❌​ ​ 写一首关于 OpenAI 的诗。​ ​ 更好的案…...

蚁群算法 (Ant Colony Optimization) 算法详解及案例分析

蚁群算法 (Ant Colony Optimization) 算法详解及案例分析 目录 蚁群算法 (Ant Colony Optimization) 算法详解及案例分析1. 引言2. 蚁群算法 (ACO) 算法原理2.1 蚂蚁觅食行为2.2 算法步骤2.3 数学公式3. 蚁群算法的优势与局限性3.1 优势3.2 局限性4. 案例分析4.1 案例1: 旅行商…...

安卓动态设置Unity图形API

命令行方式 Unity图像api设置为自动,安卓动态设置Vulkan、OpenGLES Unity设置 安卓设置 创建自定义活动并将其设置为应用程序入口点。 在自定义活动中,覆盖字符串UnityPlayerActivity。updateunitycommandlineararguments (String cmdLine)方法。 在该方法中,将cmdLine…...

通信协议—WebSocket

一、WebSocket编程概念 1.1 什么是WebSocket WebSocket 是一种全双工通信协议&#xff0c;允许在客户端&#xff08;通常是浏览器&#xff09;和服务器之间建立持久连接&#xff0c;以实现实时的双向通信。它是 HTML5 标准的一部分&#xff0c;相比传统的 HTTP 请求&#xff…...

helm推送到harbor私有库--http: server gave HTTP response to HTTPS client

harbor私有库访问的是http模式 harbor 2.8版本以上可以存储helm镜像 docker镜像推送的时候需要docker端配置insecure-registries 发现helm推送只能在harbor部署的本机使用localhost才能推送成功&#xff0c;即 helm push xxx.tgz oci://localhost:80/library 使用helm pus…...

数据结构——实验一·线性表

海~~欢迎来到Tubishu的博客&#x1f338;如果你也是一名在校大学生&#xff0c;正在寻找各种变成资源&#xff0c;那么你就来对地方啦&#x1f31f; Tubishu是一名计算机本科生&#xff0c;会不定期整理和分享学习中的优质资源&#xff0c;希望能为你的编程之路添砖加瓦⭐&…...

快速搭建深度学习环境(Linux:miniconda+pytorch+jupyter notebook)

本文基于服务器端环境展开&#xff0c;使用的虚拟终端为Xshell。 miniconda miniconda是Anaconda的轻量版&#xff0c;仅包含Conda和Python&#xff0c;如果只做深度学习&#xff0c;可使用miniconda。 [注]&#xff1a;Anaconda、Conda与Miniconda Conda&#xff1a;创建和管…...

OpenCV相机标定与3D重建(66)对立体匹配生成的视差图(disparity map)进行验证的函数validateDisparity()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 使用左右检查来验证视差。矩阵 “cost” 应该由立体对应算法计算。 cv::validateDisparity 函数是 OpenCV 库中用于对立体匹配生成的视差图&…...

2025年新开局!谁在引领汽车AI风潮?

汽车AI革命已来。 在2025年伊始开幕的CES展上&#xff0c;AI汽车、AI座舱无疑成为了今年汽车行业的最大热点。其中不少车企在2025年CES上展示了其新一代AI座舱&#xff0c;为下一代智能汽车的人机交互、场景创新率先打样。 其中&#xff0c;东软集团也携带AI驱动、大数据支撑…...

Spring自定义BeanPostProcessor实现bean的代理Java动态代理知识

上文&#xff1a;https://blog.csdn.net/qq_26437925/article/details/145241149 中大致了解了spring aop的代理的实现&#xff0c;其实就是有个BeanPostProcessor代理了bean对象。顺便复习下java代理相关知识 目录 自定义BeanPostProcessor实现aopJava动态代理知识动态代理的几…...

三篇物联网漏洞挖掘综述

由于物联网设备存在硬件资源受限、硬件复杂异构&#xff0c; 代码、文档未公开的问题&#xff0c; 物联网设备的漏洞挖掘存在较大的挑战&#xff1a; 硬件资源受限性: 通用动态二进分析技术需要在运行程序外围实施监控分析。由于物联网设备存储资源(存储)的受限性&#xff0c;…...

Pytorch深度学习指南 卷I --编程基础(A Beginner‘s Guide) 第1章 一个简单的回归

本章正式开始使用pytorch的接口来实现对应的numpy的学习的过程&#xff0c;来学习模型的实现&#xff0c;我们会介绍numpy是如何学习的&#xff0c;以及我们如何一步步的通过torch的接口来实现简单化的过程&#xff0c;优雅的展示我们的代码&#xff0c;已经我们的代码完成的事…...

【EXCEL_VBA_实战】多工作薄合并深入理解

工作背景&#xff1a;多个工作薄存在冲突的名称&#xff0c;需快速合并 困难点&#xff1a;工作表移动复制时&#xff0c;若有冲突的名称&#xff0c;会不断弹出对话框待人工确认 思路&#xff1a;利用代码确认弹出的对话框 关键代码&#xff1a;Application.DisplayAlerts …...

mysql之表的外键约束

MySQL表的外键约束详细介绍及代码示例 外键约束是数据库中用于维护数据完整性和一致性的重要机制。它确保一个表中的数据与另一个表中的数据相关联&#xff0c;防止无效的数据引用。本文将详细介绍了外键约束的各个方面&#xff0c;并通过具体的代码示例进行演示。 1. 外键约束…...

Tuning the Go HTTP Client Settings

记录一次Go HTTP Client TIME_WAIT的优化 业务流程 分析 通过容器监控发现服务到事件总线的负载均衡之间有大量的短链接&#xff0c;回看一下代码 发送请求的代码 func SendToKEvent(ev *KEvent) error {data, err : json.Marshal(ev.Data)if err ! nil {return err}log.Pri…...

第二十四课 Vue中子组件调用父组件数据

Vue中子组件调用父组件数据 Vue是不建议在不同的组件直接传递值的&#xff0c;我们需要使用props方法来进行组件间的值传递 子组件调用父组件数据 父模板的数据&#xff0c;子组件是无法直接调用的 无法直接调用 1&#xff09;组件调用顶级对象中的data <div class&quo…...

Jenkins-pipeline语法说明

一. 简述&#xff1a; Jenkins Pipeline 是一种持续集成和持续交付&#xff08;CI/CD&#xff09;工具&#xff0c;它允许用户通过代码定义构建、测试和部署流程。 二. 关于jenkinsfile&#xff1a; 1. Sections部分&#xff1a; Pipeline里的Sections通常包含一个或多个Direc…...

小米Vela操作系统开源:AIoT时代的全新引擎

小米近日正式开源了其物联网嵌入式软件平台——Vela操作系统&#xff0c;并将其命名为OpenVela。这一举动在AIoT&#xff08;人工智能物联网&#xff09;领域掀起了不小的波澜&#xff0c;也为开发者们提供了一个强大的AI代码生成器和开发平台。OpenVela项目源代码已托管至GitH…...

NodeJs如何做API接口单元测试? --【elpis全栈项目】

NodeJs API接口单元测试 api单元测试需要用到的 assert&#xff1a;断言库 (还要一些断言库比如:Chai)supertest&#xff1a; 模拟http请求 简单的例子&#xff1a; const express require(express); const supertest require(supertest); const assert require(assert);…...

bundletool来特定设备规范的json安装aab包

1、获取自己设备的设备规范json java -jar ./bundletool.jar get-device-spec --outputj:/device-spec.json 2、根据设备规范生成apks包 java -jar ./bundletool.jar build-apks --device-specj:/device-spec.json --bundleapp-dev-release.aab --output随便的文件名.apks -…...

2024年第十五届蓝桥杯青少组国赛(c++)真题—快速分解质因数

快速分解质因数 完整题目和在线测评可点击下方链接前往&#xff1a; 快速分解质因数_C_少儿编程题库学习中心-嗨信奥https://www.hixinao.com/tiku/cpp/show-3781.htmlhttps://www.hixinao.com/tiku/cpp/show-3781.html 若如其他赛事真题可自行前往题库中心查找&#xff0c;题…...

.Net Core微服务入门全纪录(四)——Ocelot-API网关(上)

系列文章目录 1、.Net Core微服务入门系列&#xff08;一&#xff09;——项目搭建 2、.Net Core微服务入门全纪录&#xff08;二&#xff09;——Consul-服务注册与发现&#xff08;上&#xff09; 3、.Net Core微服务入门全纪录&#xff08;三&#xff09;——Consul-服务注…...

chrome游览器JSON Formatter插件无效问题排查,FastJsonHttpMessageConverter导致Content-Type返回不正确

问题描述 chrome游览器又一款JSON插件叫JSON Formatter&#xff0c;游览器GET请求调用接口时&#xff0c;如果返回的数据是json格式&#xff0c;则会自动格式化展示&#xff0c;类似这样&#xff1a; 但是今天突然发现怎么也格式化不了&#xff0c;打开一个json文件倒是可以格…...

[Qt]系统相关-网络编程-TCP、UDP、HTTP协议

目录 前言 一、UDP网络编程 1.Qt项目文件 2.UDP类 QUdpSocket QNetworkDatagram 3.UDP回显服务器案例 细节 服务器设计 客户端设计 二、TCP网络编程 1.TCP类 QTcpServer QTcpSocket 2.TCP回显服务器案例 细节 服务器设计 客户端设计 三、HTTP客户端 1.HTTP…...