“推理”(Inference)在深度学习和机器学习的语境
“推理”(Inference)在深度学习和机器学习的语境中,是指使用经过训练的模型对新数据进行预测的过程。将其简单地理解为“模型的应用阶段”。在这一阶段,我们不再进行模型训练,而是利用已训练好且保存下来的模型来获取对于新输入数据的输出结果。
### 推理的基本流程
1. **加载模型**:首先需要加载一个已经训练好的模型,这个模型通常是在某个训练集上经过多轮迭代优化得来的。
2. **预处理输入数据**:将新输入数据处理成模型能够接受的格式。这可能包括调整维度、归一化、转换数据类型等。
3. **执行推理**:将预处理后的数据传入模型,模型会根据输入数据进行计算,得出输出结果。这通常是通过模型调用的方式实现。
4. **处理输出结果**:根据模型的输出结果进行后续处理,例如分类标签的确定、数值的解释和使用等。
### 具体示例
假设我们训练了一个图像分类模型,流程如下:
- **训练阶段**:在大量标注好的图像上训练模型,使得模型能够识别不同的图像类别。
- **推理阶段**:
- **加载模型**:从磁盘加载训练好的模型。
- **处理新图像**:获取一张新的待分类图像,将其调整大小、归一化等处理,使其符合输入格式的要求。
- **进行推理**:将处理后的图像输入到模型中,模型输出对应的类别概率或分类标签。
- **解析输出**:对输出结果进行解读,例如将概率最高的类别作为预测结果。
### 使用场景
推理在很多场景下都非常重要,例如:
- **应用程序**:在手机上使用人脸识别功能的 App,利用训练过的模型进行实时推理。
- **自动驾驶**:将传感器数据输入模型,实时判断周围环境的状态。
- **医疗影像分析**:分析医疗图像以辅助诊断疾病。
### 总结
推理就是利用已有的模型对新数据进行预测的过程,它是将训练阶段所学的知识应用到实际数据中的重要环节。如果您有其他相关的问题或者想了解更多关于推理的具体细节,随时欢迎问我哦!
相关文章:
“推理”(Inference)在深度学习和机器学习的语境
“推理”(Inference)在深度学习和机器学习的语境中,是指使用经过训练的模型对新数据进行预测的过程。将其简单地理解为“模型的应用阶段”。在这一阶段,我们不再进行模型训练,而是利用已训练好且保存下来的模型来获取对…...
字节腾讯阿里大厂面经汇总:Java集合(容器)大厂面试题及参考答案
ArrayList 的扩容机制以及删除操作的时间复杂度 ArrayList 是 Java 中非常常用的一个集合类,它是基于数组实现的动态数组。当我们创建一个 ArrayList 时,如果不指定初始容量,它会有一个默认的初始容量(通常是 10)。当我们向 ArrayList 中添加元素时,如果元素的数量达到了…...

数据结构(初阶)(一)----算法复杂度
算法复杂度 算法复杂度数据结构算法算法效率复杂度的概念 数据结构 数据结构(Data Structure)是计算机存储、组织数据的⽅式,指相互之间存在⼀种或多种特定关系的数据元素的集合。没有⼀种单⼀的数据结构对所有⽤途都有⽤,所以我们要学各式各样的数据结…...
构建高效稳定的网络环境
概述 网络技术是当今IT行业的重要组成部分,构建高效稳定的网络环境对于企业、个人和互联网发展至关重要。本文将探讨网络技术中的关键要素,包括网络协议、网络架构、网络安全和网络优化,并提供实用的技巧和最佳实践,以帮助您构建…...

使用Edge打开visio文件
使用Edge打开visio文件 打开Edge浏览器搜索‘vsdx edge’ 打开第一个搜索结果 Microsoft Support 根据上述打开的页面进行操作 第一步:安装Visio Viewer 第二步:添加注册表 桌面新增文本文件,将下面的内容放入新建文本中,修…...
ChatGPT Prompt 编写指南
一、第一原则:明确的意图 你需要明确地表达你的意图和要求,尽可能具体、描述性、详细地描述所需的上下文、你期望的结果等。你的要求越明确,越有希望获得你想要的答案。 糟糕的案例 ❌ 写一首关于 OpenAI 的诗。 更好的案…...
蚁群算法 (Ant Colony Optimization) 算法详解及案例分析
蚁群算法 (Ant Colony Optimization) 算法详解及案例分析 目录 蚁群算法 (Ant Colony Optimization) 算法详解及案例分析1. 引言2. 蚁群算法 (ACO) 算法原理2.1 蚂蚁觅食行为2.2 算法步骤2.3 数学公式3. 蚁群算法的优势与局限性3.1 优势3.2 局限性4. 案例分析4.1 案例1: 旅行商…...

安卓动态设置Unity图形API
命令行方式 Unity图像api设置为自动,安卓动态设置Vulkan、OpenGLES Unity设置 安卓设置 创建自定义活动并将其设置为应用程序入口点。 在自定义活动中,覆盖字符串UnityPlayerActivity。updateunitycommandlineararguments (String cmdLine)方法。 在该方法中,将cmdLine…...
通信协议—WebSocket
一、WebSocket编程概念 1.1 什么是WebSocket WebSocket 是一种全双工通信协议,允许在客户端(通常是浏览器)和服务器之间建立持久连接,以实现实时的双向通信。它是 HTML5 标准的一部分,相比传统的 HTTP 请求ÿ…...

helm推送到harbor私有库--http: server gave HTTP response to HTTPS client
harbor私有库访问的是http模式 harbor 2.8版本以上可以存储helm镜像 docker镜像推送的时候需要docker端配置insecure-registries 发现helm推送只能在harbor部署的本机使用localhost才能推送成功,即 helm push xxx.tgz oci://localhost:80/library 使用helm pus…...

数据结构——实验一·线性表
海~~欢迎来到Tubishu的博客🌸如果你也是一名在校大学生,正在寻找各种变成资源,那么你就来对地方啦🌟 Tubishu是一名计算机本科生,会不定期整理和分享学习中的优质资源,希望能为你的编程之路添砖加瓦⭐&…...

快速搭建深度学习环境(Linux:miniconda+pytorch+jupyter notebook)
本文基于服务器端环境展开,使用的虚拟终端为Xshell。 miniconda miniconda是Anaconda的轻量版,仅包含Conda和Python,如果只做深度学习,可使用miniconda。 [注]:Anaconda、Conda与Miniconda Conda:创建和管…...
OpenCV相机标定与3D重建(66)对立体匹配生成的视差图(disparity map)进行验证的函数validateDisparity()的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 使用左右检查来验证视差。矩阵 “cost” 应该由立体对应算法计算。 cv::validateDisparity 函数是 OpenCV 库中用于对立体匹配生成的视差图&…...

2025年新开局!谁在引领汽车AI风潮?
汽车AI革命已来。 在2025年伊始开幕的CES展上,AI汽车、AI座舱无疑成为了今年汽车行业的最大热点。其中不少车企在2025年CES上展示了其新一代AI座舱,为下一代智能汽车的人机交互、场景创新率先打样。 其中,东软集团也携带AI驱动、大数据支撑…...

Spring自定义BeanPostProcessor实现bean的代理Java动态代理知识
上文:https://blog.csdn.net/qq_26437925/article/details/145241149 中大致了解了spring aop的代理的实现,其实就是有个BeanPostProcessor代理了bean对象。顺便复习下java代理相关知识 目录 自定义BeanPostProcessor实现aopJava动态代理知识动态代理的几…...
三篇物联网漏洞挖掘综述
由于物联网设备存在硬件资源受限、硬件复杂异构, 代码、文档未公开的问题, 物联网设备的漏洞挖掘存在较大的挑战: 硬件资源受限性: 通用动态二进分析技术需要在运行程序外围实施监控分析。由于物联网设备存储资源(存储)的受限性,…...
Pytorch深度学习指南 卷I --编程基础(A Beginner‘s Guide) 第1章 一个简单的回归
本章正式开始使用pytorch的接口来实现对应的numpy的学习的过程,来学习模型的实现,我们会介绍numpy是如何学习的,以及我们如何一步步的通过torch的接口来实现简单化的过程,优雅的展示我们的代码,已经我们的代码完成的事…...
【EXCEL_VBA_实战】多工作薄合并深入理解
工作背景:多个工作薄存在冲突的名称,需快速合并 困难点:工作表移动复制时,若有冲突的名称,会不断弹出对话框待人工确认 思路:利用代码确认弹出的对话框 关键代码:Application.DisplayAlerts …...
mysql之表的外键约束
MySQL表的外键约束详细介绍及代码示例 外键约束是数据库中用于维护数据完整性和一致性的重要机制。它确保一个表中的数据与另一个表中的数据相关联,防止无效的数据引用。本文将详细介绍了外键约束的各个方面,并通过具体的代码示例进行演示。 1. 外键约束…...

Tuning the Go HTTP Client Settings
记录一次Go HTTP Client TIME_WAIT的优化 业务流程 分析 通过容器监控发现服务到事件总线的负载均衡之间有大量的短链接,回看一下代码 发送请求的代码 func SendToKEvent(ev *KEvent) error {data, err : json.Marshal(ev.Data)if err ! nil {return err}log.Pri…...

SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...

DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)
要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况,可以通过以下几种方式模拟或触发: 1. 增加CPU负载 运行大量计算密集型任务,例如: 使用多线程循环执行复杂计算(如数学运算、加密解密等)。运行图…...

《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...

【堆垛策略】设计方法
堆垛策略的设计是积木堆叠系统的核心,直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法,涵盖基础规则、优化算法和容错机制: 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则: 大尺寸/重量积木在下…...

rknn toolkit2搭建和推理
安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 ,不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源(最常用) conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

UE5 音效系统
一.音效管理 音乐一般都是WAV,创建一个背景音乐类SoudClass,一个音效类SoundClass。所有的音乐都分为这两个类。再创建一个总音乐类,将上述两个作为它的子类。 接着我们创建一个音乐混合类SoundMix,将上述三个类翻入其中,通过它管理每个音乐…...