当前位置: 首页 > news >正文

redis-排查命中率降低问题

1.命中率降低带来的问题

高并发系统,当命中率低于平常的的运行情况,或者低于70%时,会产生2个影响。

  1. 有大量的请求需要查DB,加大DB的压力;
  2. 影响redis自身的性能

不同的业务场景,阈值不一样,一般低于70%时应当排查问题

2.查看命中率

一般是监控工具感知到redis命中率下降,给开发人员发送预警信息,然后开发人员接入排查

方式1-info获取

使用info命令获取

INFO stats

total_connections_received:363810
total_commands_processed:4185370
instantaneous_ops_per_sec:4
instantaneous_write_ops_per_sec:0
instantaneous_read_ops_per_sec:0
instantaneous_other_ops_per_sec:4
total_net_input_bytes:313599223
total_net_output_bytes:6840749159
total_net_repl_input_bytes:0
total_net_repl_output_bytes:158034894
instantaneous_input_kbps:0.16
instantaneous_output_kbps:6.80
instantaneous_input_repl_kbps:0.00
instantaneous_output_repl_kbps:0.00
rejected_connections:0
sync_full:1
sync_partial_ok:0
sync_partial_err:0
expired_keys:0
expired_stale_perc:0.00
expired_time_cap_reached_count:0
expire_cycle_cpu_milliseconds:65077
evicted_keys:0
keyspace_hits:240           -- 命中次数
keyspace_misses:15          -- 未命中次数
pubsub_channels:0
pubsub_patterns:0
latest_fork_usec:683
migrate_cached_sockets:0
slave_expires_tracked_keys:0
active_defrag_hits:0
active_defrag_misses:0
active_defrag_key_hits:0
active_defrag_key_misses:0
tracking_total_keys:0
tracking_total_items:0
tracking_total_prefixes:0
unexpected_error_replies:0
total_error_replies:539
instantaneous_error_replies_ops_per_sec:0
total_reads_processed:4599582
total_writes_processed:3669362
io_threaded_reads_processed:0
io_threaded_writes_processed:0
client_query_buffer_limit_disconnections:0
client_output_buffer_limit_disconnections:0
slot_psync_ok:0
slot_psync_err:0
total_commands_received:4185652
commands_received_per_sec:4
evicted_keys_per_sec:0
hits_per_sec:0
misses_per_sec:0
hit_rate_percentage:0.00
cmd_slowlog_count:0
traffic_control_input:0
traffic_control_input_status:0
traffic_control_output:0
traffic_control_output_status:0
stat_avg_rt:37
stat_max_rt:227

keyspace_hits:240           -- 命中次数
keyspace_misses:15       -- 未命中次数

最近1分钟的命中率:获取两个时间点的命中次数

1分钟的命中次数: 第二次的命中次数 - 第一次的命中次数

1分钟的未命中次数:第二次的未命中次数 - 第一次的未命中次数

命中率 = 1分钟的命中次数 / (1分钟的命中次数 + 1分钟的未命中次数)

方式2-阿里云监控工具

3.获取未命中的key

在应用程序中记录未命中的key

public class RedisCacheUtil {public static <T> T hget(String key, String field) throws BizBussinessRuntimeException {try {Object v = hashOperations.get(key, field);if (v == null) {log.warn("Redis未命中键:" + key);}return (T)v;} catch (Exception e) {log.error("hget(" + key + ") 操作失败!,msg:" + e.getMessage());throw new BizBussinessRuntimeException(IErrMsg.ERR_REDIS, "Redis操作失败");}}public static <T> T getObject(String key) throws BizBussinessRuntimeException {try {Object v = valueOperations.get(key);if (v == null) {log.warn("Redis未命中键:" + key);}return (T) v;} catch (Exception e) {log.error("getObject(" + key + ") 操作失败!,msg:" + e.getMessage());throw new BizBussinessRuntimeException(IErrMsg.ERR_REDIS, "Redis操作失败");}}// 其它代码...
}

可以使用DB、ES记录最近的未命中的key,命中率下降时,则分析这个时间段的key的分布,进而分析出原因。

4.可能导致下降的原因

大量的同一个key:  缓存击穿(热点数据过期、key突然变成热点)

大量DB不存在的key: 缓存穿透(人为攻击、代码bug)

大量的多个key: 缓存雪崩

相关文章:

redis-排查命中率降低问题

1.命中率降低带来的问题 高并发系统&#xff0c;当命中率低于平常的的运行情况&#xff0c;或者低于70%时&#xff0c;会产生2个影响。 有大量的请求需要查DB&#xff0c;加大DB的压力&#xff1b;影响redis自身的性能 不同的业务场景&#xff0c;阈值不一样&#xff0c;一般…...

ui文件转py程序的工具

源博客连接&#xff1a; PyCharm中利用外部工具uic转成的py文件&#xff0c;里面全是C代码&#xff0c;并非python类型的代码&#xff0c;导致大量报错。。。_pyside6-uic为什么把ui转为了c-CSDN博客 如果想把ui文件转为py文件&#xff0c;首先设置pycharm的外部工具&#xf…...

Alluxio 联手 Solidigm 推出针对 AI 工作负载的高级缓存解决方案

作者&#xff1a;Wayne Gao, Yi Wang, Jie Chen, Sarika Mehta Alluxio 作为全球领先的 AI 缓存解决方案供应商&#xff0c; 提供针对 GPU 驱动 AI 负载的高速缓存。其可扩展架构支持数万个节点&#xff0c;能显著降低存储带宽的消耗。Alluxio 在解决 AI 存储挑战方面的前沿技…...

Oracle 数据库常见字段类型大全及详细解析

在工作期间会遇到数据库建表的业务&#xff0c;经常会使用复制粘帖等操作&#xff0c;而不清楚数据库的字段类型。本文记录了 Oracle 数据库常见字段类型&#xff0c;根据不同的数据需求&#xff0c;可以选择不同的字段类型来存储数据。 文章目录 一、字符类型&#xff08;Char…...

U3D的.Net学习

Mono&#xff1a;这是 Unity 最初采用的方式&#xff0c;它将 C# 代码编译为中间语言 (IL)&#xff0c;然后在目标平台上使用虚拟机 (VM) 将其转换为本地机器码执行。 IL2CPP&#xff1a;这是一种较新的方法&#xff0c;它会将 C# 代码先编译为 C 代码&#xff0c;再由 C 编译器…...

Tomcat下载配置

目录 Win下载安装 Mac下载安装配置 Win 下载 直接从官网下载https://tomcat.apache.org/download-10.cgi 在圈住的位置点击下载自己想要的版本 根据自己电脑下载64位或32位zip版本 安装 Tomcat是绿色版,直接解压到自己想放的位置即可 Mac 下载 官网 https://tomcat.ap…...

adb常用指令(完整版)

1、adb devices 查看是否连接到设备 2、adb install [-r] [-s] 安装app&#xff0c;-r强制&#xff0c;-s安装sd卡上 3、adb uninstall [-k] 卸载app&#xff0c;-k保留配置和参数 4、adb push 把本地文件上传设备 5、adb pull 下载文件到本地 6、cd D:\sdk\platform-tool…...

大数据学习(36)- Hive和YARN

&&大数据学习&& &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 承认自己的无知&#xff0c;乃是开启智慧的大门 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4dd;支持一下博主哦&#x1f91…...

C# ASP.NET MVC项目内使用ApiController

1.在App_Start文件夹新建WebApiConfig.cs文件&#xff0c;建立webApi路由的注册方法。 using System.Web.Http;namespace PrivilegeManager {public class WebApiConfig{public static void Register(HttpConfiguration config){config.MapHttpAttributeRoutes();config.Route…...

Kafka 入门与应用实战:吞吐量优化与与 RabbitMQ、RocketMQ 的对比

前言 在现代微服务架构和分布式系统中&#xff0c;消息队列作为解耦组件&#xff0c;承担着重要的职责。它不仅提供了异步处理的能力&#xff0c;还能确保系统的高可用性、容错性和扩展性。常见的消息队列包括 Kafka、RabbitMQ 和 RocketMQ&#xff0c;其中 Kafka 因其高吞吐量…...

“推理”(Inference)在深度学习和机器学习的语境

“推理”&#xff08;Inference&#xff09;在深度学习和机器学习的语境中&#xff0c;是指使用经过训练的模型对新数据进行预测的过程。将其简单地理解为“模型的应用阶段”。在这一阶段&#xff0c;我们不再进行模型训练&#xff0c;而是利用已训练好且保存下来的模型来获取对…...

字节腾讯阿里大厂面经汇总:Java集合(容器)大厂面试题及参考答案

ArrayList 的扩容机制以及删除操作的时间复杂度 ArrayList 是 Java 中非常常用的一个集合类,它是基于数组实现的动态数组。当我们创建一个 ArrayList 时,如果不指定初始容量,它会有一个默认的初始容量(通常是 10)。当我们向 ArrayList 中添加元素时,如果元素的数量达到了…...

数据结构(初阶)(一)----算法复杂度

算法复杂度 算法复杂度数据结构算法算法效率复杂度的概念 数据结构 数据结构(Data Structure)是计算机存储、组织数据的⽅式&#xff0c;指相互之间存在⼀种或多种特定关系的数据元素的集合。没有⼀种单⼀的数据结构对所有⽤途都有⽤&#xff0c;所以我们要学各式各样的数据结…...

构建高效稳定的网络环境

概述 网络技术是当今IT行业的重要组成部分&#xff0c;构建高效稳定的网络环境对于企业、个人和互联网发展至关重要。本文将探讨网络技术中的关键要素&#xff0c;包括网络协议、网络架构、网络安全和网络优化&#xff0c;并提供实用的技巧和最佳实践&#xff0c;以帮助您构建…...

使用Edge打开visio文件

使用Edge打开visio文件 打开Edge浏览器搜索‘vsdx edge’ 打开第一个搜索结果 Microsoft Support 根据上述打开的页面进行操作 第一步&#xff1a;安装Visio Viewer 第二步&#xff1a;添加注册表 桌面新增文本文件&#xff0c;将下面的内容放入新建文本中&#xff0c;修…...

ChatGPT Prompt 编写指南

一、第一原则&#xff1a;明确的意图​ 你需要明确地表达你的意图和要求&#xff0c;尽可能具体、描述性、详细地描述所需的上下文、你期望的结果等。你的要求越明确&#xff0c;越有希望获得你想要的答案。​ 糟糕的案例 ❌​ ​ 写一首关于 OpenAI 的诗。​ ​ 更好的案…...

蚁群算法 (Ant Colony Optimization) 算法详解及案例分析

蚁群算法 (Ant Colony Optimization) 算法详解及案例分析 目录 蚁群算法 (Ant Colony Optimization) 算法详解及案例分析1. 引言2. 蚁群算法 (ACO) 算法原理2.1 蚂蚁觅食行为2.2 算法步骤2.3 数学公式3. 蚁群算法的优势与局限性3.1 优势3.2 局限性4. 案例分析4.1 案例1: 旅行商…...

安卓动态设置Unity图形API

命令行方式 Unity图像api设置为自动,安卓动态设置Vulkan、OpenGLES Unity设置 安卓设置 创建自定义活动并将其设置为应用程序入口点。 在自定义活动中,覆盖字符串UnityPlayerActivity。updateunitycommandlineararguments (String cmdLine)方法。 在该方法中,将cmdLine…...

通信协议—WebSocket

一、WebSocket编程概念 1.1 什么是WebSocket WebSocket 是一种全双工通信协议&#xff0c;允许在客户端&#xff08;通常是浏览器&#xff09;和服务器之间建立持久连接&#xff0c;以实现实时的双向通信。它是 HTML5 标准的一部分&#xff0c;相比传统的 HTTP 请求&#xff…...

helm推送到harbor私有库--http: server gave HTTP response to HTTPS client

harbor私有库访问的是http模式 harbor 2.8版本以上可以存储helm镜像 docker镜像推送的时候需要docker端配置insecure-registries 发现helm推送只能在harbor部署的本机使用localhost才能推送成功&#xff0c;即 helm push xxx.tgz oci://localhost:80/library 使用helm pus…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log&#xff0c;共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题&#xff0c;不能使用ELK只能使用…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

苍穹外卖--缓存菜品

1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得&#xff0c;如果用户端访问量比较大&#xff0c;数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据&#xff0c;减少数据库查询操作。 缓存逻辑分析&#xff1a; ①每个分类下的菜品保持一份缓存数据…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...