当前位置: 首页 > news >正文

redis-排查命中率降低问题

1.命中率降低带来的问题

高并发系统,当命中率低于平常的的运行情况,或者低于70%时,会产生2个影响。

  1. 有大量的请求需要查DB,加大DB的压力;
  2. 影响redis自身的性能

不同的业务场景,阈值不一样,一般低于70%时应当排查问题

2.查看命中率

一般是监控工具感知到redis命中率下降,给开发人员发送预警信息,然后开发人员接入排查

方式1-info获取

使用info命令获取

INFO stats

total_connections_received:363810
total_commands_processed:4185370
instantaneous_ops_per_sec:4
instantaneous_write_ops_per_sec:0
instantaneous_read_ops_per_sec:0
instantaneous_other_ops_per_sec:4
total_net_input_bytes:313599223
total_net_output_bytes:6840749159
total_net_repl_input_bytes:0
total_net_repl_output_bytes:158034894
instantaneous_input_kbps:0.16
instantaneous_output_kbps:6.80
instantaneous_input_repl_kbps:0.00
instantaneous_output_repl_kbps:0.00
rejected_connections:0
sync_full:1
sync_partial_ok:0
sync_partial_err:0
expired_keys:0
expired_stale_perc:0.00
expired_time_cap_reached_count:0
expire_cycle_cpu_milliseconds:65077
evicted_keys:0
keyspace_hits:240           -- 命中次数
keyspace_misses:15          -- 未命中次数
pubsub_channels:0
pubsub_patterns:0
latest_fork_usec:683
migrate_cached_sockets:0
slave_expires_tracked_keys:0
active_defrag_hits:0
active_defrag_misses:0
active_defrag_key_hits:0
active_defrag_key_misses:0
tracking_total_keys:0
tracking_total_items:0
tracking_total_prefixes:0
unexpected_error_replies:0
total_error_replies:539
instantaneous_error_replies_ops_per_sec:0
total_reads_processed:4599582
total_writes_processed:3669362
io_threaded_reads_processed:0
io_threaded_writes_processed:0
client_query_buffer_limit_disconnections:0
client_output_buffer_limit_disconnections:0
slot_psync_ok:0
slot_psync_err:0
total_commands_received:4185652
commands_received_per_sec:4
evicted_keys_per_sec:0
hits_per_sec:0
misses_per_sec:0
hit_rate_percentage:0.00
cmd_slowlog_count:0
traffic_control_input:0
traffic_control_input_status:0
traffic_control_output:0
traffic_control_output_status:0
stat_avg_rt:37
stat_max_rt:227

keyspace_hits:240           -- 命中次数
keyspace_misses:15       -- 未命中次数

最近1分钟的命中率:获取两个时间点的命中次数

1分钟的命中次数: 第二次的命中次数 - 第一次的命中次数

1分钟的未命中次数:第二次的未命中次数 - 第一次的未命中次数

命中率 = 1分钟的命中次数 / (1分钟的命中次数 + 1分钟的未命中次数)

方式2-阿里云监控工具

3.获取未命中的key

在应用程序中记录未命中的key

public class RedisCacheUtil {public static <T> T hget(String key, String field) throws BizBussinessRuntimeException {try {Object v = hashOperations.get(key, field);if (v == null) {log.warn("Redis未命中键:" + key);}return (T)v;} catch (Exception e) {log.error("hget(" + key + ") 操作失败!,msg:" + e.getMessage());throw new BizBussinessRuntimeException(IErrMsg.ERR_REDIS, "Redis操作失败");}}public static <T> T getObject(String key) throws BizBussinessRuntimeException {try {Object v = valueOperations.get(key);if (v == null) {log.warn("Redis未命中键:" + key);}return (T) v;} catch (Exception e) {log.error("getObject(" + key + ") 操作失败!,msg:" + e.getMessage());throw new BizBussinessRuntimeException(IErrMsg.ERR_REDIS, "Redis操作失败");}}// 其它代码...
}

可以使用DB、ES记录最近的未命中的key,命中率下降时,则分析这个时间段的key的分布,进而分析出原因。

4.可能导致下降的原因

大量的同一个key:  缓存击穿(热点数据过期、key突然变成热点)

大量DB不存在的key: 缓存穿透(人为攻击、代码bug)

大量的多个key: 缓存雪崩

相关文章:

redis-排查命中率降低问题

1.命中率降低带来的问题 高并发系统&#xff0c;当命中率低于平常的的运行情况&#xff0c;或者低于70%时&#xff0c;会产生2个影响。 有大量的请求需要查DB&#xff0c;加大DB的压力&#xff1b;影响redis自身的性能 不同的业务场景&#xff0c;阈值不一样&#xff0c;一般…...

ui文件转py程序的工具

源博客连接&#xff1a; PyCharm中利用外部工具uic转成的py文件&#xff0c;里面全是C代码&#xff0c;并非python类型的代码&#xff0c;导致大量报错。。。_pyside6-uic为什么把ui转为了c-CSDN博客 如果想把ui文件转为py文件&#xff0c;首先设置pycharm的外部工具&#xf…...

Alluxio 联手 Solidigm 推出针对 AI 工作负载的高级缓存解决方案

作者&#xff1a;Wayne Gao, Yi Wang, Jie Chen, Sarika Mehta Alluxio 作为全球领先的 AI 缓存解决方案供应商&#xff0c; 提供针对 GPU 驱动 AI 负载的高速缓存。其可扩展架构支持数万个节点&#xff0c;能显著降低存储带宽的消耗。Alluxio 在解决 AI 存储挑战方面的前沿技…...

Oracle 数据库常见字段类型大全及详细解析

在工作期间会遇到数据库建表的业务&#xff0c;经常会使用复制粘帖等操作&#xff0c;而不清楚数据库的字段类型。本文记录了 Oracle 数据库常见字段类型&#xff0c;根据不同的数据需求&#xff0c;可以选择不同的字段类型来存储数据。 文章目录 一、字符类型&#xff08;Char…...

U3D的.Net学习

Mono&#xff1a;这是 Unity 最初采用的方式&#xff0c;它将 C# 代码编译为中间语言 (IL)&#xff0c;然后在目标平台上使用虚拟机 (VM) 将其转换为本地机器码执行。 IL2CPP&#xff1a;这是一种较新的方法&#xff0c;它会将 C# 代码先编译为 C 代码&#xff0c;再由 C 编译器…...

Tomcat下载配置

目录 Win下载安装 Mac下载安装配置 Win 下载 直接从官网下载https://tomcat.apache.org/download-10.cgi 在圈住的位置点击下载自己想要的版本 根据自己电脑下载64位或32位zip版本 安装 Tomcat是绿色版,直接解压到自己想放的位置即可 Mac 下载 官网 https://tomcat.ap…...

adb常用指令(完整版)

1、adb devices 查看是否连接到设备 2、adb install [-r] [-s] 安装app&#xff0c;-r强制&#xff0c;-s安装sd卡上 3、adb uninstall [-k] 卸载app&#xff0c;-k保留配置和参数 4、adb push 把本地文件上传设备 5、adb pull 下载文件到本地 6、cd D:\sdk\platform-tool…...

大数据学习(36)- Hive和YARN

&&大数据学习&& &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 承认自己的无知&#xff0c;乃是开启智慧的大门 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4dd;支持一下博主哦&#x1f91…...

C# ASP.NET MVC项目内使用ApiController

1.在App_Start文件夹新建WebApiConfig.cs文件&#xff0c;建立webApi路由的注册方法。 using System.Web.Http;namespace PrivilegeManager {public class WebApiConfig{public static void Register(HttpConfiguration config){config.MapHttpAttributeRoutes();config.Route…...

Kafka 入门与应用实战:吞吐量优化与与 RabbitMQ、RocketMQ 的对比

前言 在现代微服务架构和分布式系统中&#xff0c;消息队列作为解耦组件&#xff0c;承担着重要的职责。它不仅提供了异步处理的能力&#xff0c;还能确保系统的高可用性、容错性和扩展性。常见的消息队列包括 Kafka、RabbitMQ 和 RocketMQ&#xff0c;其中 Kafka 因其高吞吐量…...

“推理”(Inference)在深度学习和机器学习的语境

“推理”&#xff08;Inference&#xff09;在深度学习和机器学习的语境中&#xff0c;是指使用经过训练的模型对新数据进行预测的过程。将其简单地理解为“模型的应用阶段”。在这一阶段&#xff0c;我们不再进行模型训练&#xff0c;而是利用已训练好且保存下来的模型来获取对…...

字节腾讯阿里大厂面经汇总:Java集合(容器)大厂面试题及参考答案

ArrayList 的扩容机制以及删除操作的时间复杂度 ArrayList 是 Java 中非常常用的一个集合类,它是基于数组实现的动态数组。当我们创建一个 ArrayList 时,如果不指定初始容量,它会有一个默认的初始容量(通常是 10)。当我们向 ArrayList 中添加元素时,如果元素的数量达到了…...

数据结构(初阶)(一)----算法复杂度

算法复杂度 算法复杂度数据结构算法算法效率复杂度的概念 数据结构 数据结构(Data Structure)是计算机存储、组织数据的⽅式&#xff0c;指相互之间存在⼀种或多种特定关系的数据元素的集合。没有⼀种单⼀的数据结构对所有⽤途都有⽤&#xff0c;所以我们要学各式各样的数据结…...

构建高效稳定的网络环境

概述 网络技术是当今IT行业的重要组成部分&#xff0c;构建高效稳定的网络环境对于企业、个人和互联网发展至关重要。本文将探讨网络技术中的关键要素&#xff0c;包括网络协议、网络架构、网络安全和网络优化&#xff0c;并提供实用的技巧和最佳实践&#xff0c;以帮助您构建…...

使用Edge打开visio文件

使用Edge打开visio文件 打开Edge浏览器搜索‘vsdx edge’ 打开第一个搜索结果 Microsoft Support 根据上述打开的页面进行操作 第一步&#xff1a;安装Visio Viewer 第二步&#xff1a;添加注册表 桌面新增文本文件&#xff0c;将下面的内容放入新建文本中&#xff0c;修…...

ChatGPT Prompt 编写指南

一、第一原则&#xff1a;明确的意图​ 你需要明确地表达你的意图和要求&#xff0c;尽可能具体、描述性、详细地描述所需的上下文、你期望的结果等。你的要求越明确&#xff0c;越有希望获得你想要的答案。​ 糟糕的案例 ❌​ ​ 写一首关于 OpenAI 的诗。​ ​ 更好的案…...

蚁群算法 (Ant Colony Optimization) 算法详解及案例分析

蚁群算法 (Ant Colony Optimization) 算法详解及案例分析 目录 蚁群算法 (Ant Colony Optimization) 算法详解及案例分析1. 引言2. 蚁群算法 (ACO) 算法原理2.1 蚂蚁觅食行为2.2 算法步骤2.3 数学公式3. 蚁群算法的优势与局限性3.1 优势3.2 局限性4. 案例分析4.1 案例1: 旅行商…...

安卓动态设置Unity图形API

命令行方式 Unity图像api设置为自动,安卓动态设置Vulkan、OpenGLES Unity设置 安卓设置 创建自定义活动并将其设置为应用程序入口点。 在自定义活动中,覆盖字符串UnityPlayerActivity。updateunitycommandlineararguments (String cmdLine)方法。 在该方法中,将cmdLine…...

通信协议—WebSocket

一、WebSocket编程概念 1.1 什么是WebSocket WebSocket 是一种全双工通信协议&#xff0c;允许在客户端&#xff08;通常是浏览器&#xff09;和服务器之间建立持久连接&#xff0c;以实现实时的双向通信。它是 HTML5 标准的一部分&#xff0c;相比传统的 HTTP 请求&#xff…...

helm推送到harbor私有库--http: server gave HTTP response to HTTPS client

harbor私有库访问的是http模式 harbor 2.8版本以上可以存储helm镜像 docker镜像推送的时候需要docker端配置insecure-registries 发现helm推送只能在harbor部署的本机使用localhost才能推送成功&#xff0c;即 helm push xxx.tgz oci://localhost:80/library 使用helm pus…...

数据结构——实验一·线性表

海~~欢迎来到Tubishu的博客&#x1f338;如果你也是一名在校大学生&#xff0c;正在寻找各种变成资源&#xff0c;那么你就来对地方啦&#x1f31f; Tubishu是一名计算机本科生&#xff0c;会不定期整理和分享学习中的优质资源&#xff0c;希望能为你的编程之路添砖加瓦⭐&…...

快速搭建深度学习环境(Linux:miniconda+pytorch+jupyter notebook)

本文基于服务器端环境展开&#xff0c;使用的虚拟终端为Xshell。 miniconda miniconda是Anaconda的轻量版&#xff0c;仅包含Conda和Python&#xff0c;如果只做深度学习&#xff0c;可使用miniconda。 [注]&#xff1a;Anaconda、Conda与Miniconda Conda&#xff1a;创建和管…...

OpenCV相机标定与3D重建(66)对立体匹配生成的视差图(disparity map)进行验证的函数validateDisparity()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 使用左右检查来验证视差。矩阵 “cost” 应该由立体对应算法计算。 cv::validateDisparity 函数是 OpenCV 库中用于对立体匹配生成的视差图&…...

2025年新开局!谁在引领汽车AI风潮?

汽车AI革命已来。 在2025年伊始开幕的CES展上&#xff0c;AI汽车、AI座舱无疑成为了今年汽车行业的最大热点。其中不少车企在2025年CES上展示了其新一代AI座舱&#xff0c;为下一代智能汽车的人机交互、场景创新率先打样。 其中&#xff0c;东软集团也携带AI驱动、大数据支撑…...

Spring自定义BeanPostProcessor实现bean的代理Java动态代理知识

上文&#xff1a;https://blog.csdn.net/qq_26437925/article/details/145241149 中大致了解了spring aop的代理的实现&#xff0c;其实就是有个BeanPostProcessor代理了bean对象。顺便复习下java代理相关知识 目录 自定义BeanPostProcessor实现aopJava动态代理知识动态代理的几…...

三篇物联网漏洞挖掘综述

由于物联网设备存在硬件资源受限、硬件复杂异构&#xff0c; 代码、文档未公开的问题&#xff0c; 物联网设备的漏洞挖掘存在较大的挑战&#xff1a; 硬件资源受限性: 通用动态二进分析技术需要在运行程序外围实施监控分析。由于物联网设备存储资源(存储)的受限性&#xff0c;…...

Pytorch深度学习指南 卷I --编程基础(A Beginner‘s Guide) 第1章 一个简单的回归

本章正式开始使用pytorch的接口来实现对应的numpy的学习的过程&#xff0c;来学习模型的实现&#xff0c;我们会介绍numpy是如何学习的&#xff0c;以及我们如何一步步的通过torch的接口来实现简单化的过程&#xff0c;优雅的展示我们的代码&#xff0c;已经我们的代码完成的事…...

【EXCEL_VBA_实战】多工作薄合并深入理解

工作背景&#xff1a;多个工作薄存在冲突的名称&#xff0c;需快速合并 困难点&#xff1a;工作表移动复制时&#xff0c;若有冲突的名称&#xff0c;会不断弹出对话框待人工确认 思路&#xff1a;利用代码确认弹出的对话框 关键代码&#xff1a;Application.DisplayAlerts …...

mysql之表的外键约束

MySQL表的外键约束详细介绍及代码示例 外键约束是数据库中用于维护数据完整性和一致性的重要机制。它确保一个表中的数据与另一个表中的数据相关联&#xff0c;防止无效的数据引用。本文将详细介绍了外键约束的各个方面&#xff0c;并通过具体的代码示例进行演示。 1. 外键约束…...

Tuning the Go HTTP Client Settings

记录一次Go HTTP Client TIME_WAIT的优化 业务流程 分析 通过容器监控发现服务到事件总线的负载均衡之间有大量的短链接&#xff0c;回看一下代码 发送请求的代码 func SendToKEvent(ev *KEvent) error {data, err : json.Marshal(ev.Data)if err ! nil {return err}log.Pri…...