当前位置: 首页 > news >正文

LangChain + llamaFactory + Qwen2-7b-VL 构建本地RAG问答系统

单纯仅靠LLM会产生误导性的 “幻觉”,训练数据会过时,处理特定知识时效率不高,缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。

正是在这样的背景下,检索增强生成技术(Retrieval-Augmented Generation,RAG)应时而生,成为大模型时代的一大趋势。

RAG通过在语言模型生成答案之前,先从广泛的专业文档数据库中检索相关信息,然后利用这些专业信息来引导大模型生成的结果,极大地提升了内容的准确性和相关性。

RAG整体技术路线可分为3大块8个小点见图1,其中包含知识库构建、知识检索和知识问答。

参考连接:

langchain框架轻松实现本地RAG_langchain实现rag-CSDN博客

https://www.zhihu.com/question/652674711/answer/3617998488

https://zhuanlan.zhihu.com/p/695287607

https://zhuanlan.zhihu.com/p/692327769

1,Linux 安装llamaFactory

git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd LLaMA-Factory
pip install -e '.[torch,metrics]'

2, 安装Qwen2-7b-VL模型

pip install modelscope 
modelscope download --model Qwen/Qwen2-VL-7B-Instruct --local_dir ./Qwen2-VL-7B-Instruct

 3,用llamaFactory启动Qwen2-7b-VL 【启动server端,端口8000】

# 启动黑框api
CUDA_VISIBLE_DEVICES=0 API_PORT=8000 llamafactory-cli api \--model_name_or_path /home/xxx/Qwen2-VL-7B-Instruct \--template qwen2_vl \--infer_backend huggingface \--trust_remote_code true# 后端运行,启动对话页面
nohup llamafactory-cli webchat \--model_name_or_path /home/xxx/Qwen2-VL-2B-Instruct \--template qwen2_vl \--infer_backend huggingface \--trust_remote_code true &

4, 安装Embedding库

modelscope download --model BAAI/bge-large-zh --local_dir ./bge-large-zh

5,自定义langchain Client代码【Client端,端口8000】;将搜集的文档放在目录langchain_dataset下

import os
from langchain_community.document_loaders import TextLoader
from langchain.prompts import ChatPromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain.llms.base import LLM
from openai import OpenAI
import base64
from langchain.llms.utils import enforce_stop_tokens
from langchain_huggingface import HuggingFaceEmbeddings# 定义LLM模型
class MyGame(LLM):def __init__(self):super().__init__()print("construct MyGame")def _llm_type(self) -> str:return "MyGame"def encode_image(self, image_path):with open(image_path, "rb") as image_file:return base64.b64encode(image_file.read()).decode('utf-8')def mygame_completion(self, message):client = OpenAI(api_key="0",base_url="http://localhost:{}/v1".format(os.environ.get("API_PORT", 8000)),)response = client.chat.completions.create(model="gpt-4o-mini",messages=message,stream=False,temperature=0.1)return response.choices[0].message.contentdef _call(self, prompt, stop=None, image_path=None):if image_path is None:messages = [{"role": "user", "content": prompt}]else:base64_image = self.encode_image(image_path)messages = [{"role": "user","content": [{"type": "text","text": prompt},{"type": "image_url","image_url": {"url":f"data:image/jpeg;base64,{base64_image}"},}]}]response = self.mygame_completion(messages)if stop is not None:response = enforce_stop_tokens(response, stop)return responseBGE_MODEL_PATH = "/home/xxx/bge-large-zh"
root_dir = "./langchain_dataset"def extract_docs_from_directory(directory):docs = []  # 初始化文档列表for root, dirs, files in os.walk(directory):  # 遍历目录for file in files:file_path = os.path.join(root, file)  # 获取文件的完整路径try:loader = TextLoader(file_path)    # 创建TextLoader实例docs.extend(loader.load())        # 加载文件内容并追加到文档列表except Exception as e:print(f"Error loading file {file_path}: {e}")  # 捕获并打印加载错误return docsdocs = extract_docs_from_directory(root_dir)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=150, chunk_overlap=20)
documents = text_splitter.split_documents(docs)
huggingface_bge_embedding = HuggingFaceEmbeddings(model_name=BGE_MODEL_PATH)
vectorstore = Chroma.from_documents(documents, huggingface_bge_embedding, persist_directory="./vectorstore")query="80cm是多少米."
result = vectorstore.similarity_search(query, k=3)for doc in result:print(doc.page_content)print("********")retriever = vectorstore.as_retriever()template = """Answer the question based only on the following context:{context}Question: {question},请用中文输出答案。
"""
prompt = ChatPromptTemplate.from_template(template)
llm = MyGame()def format_docs(docs):return "\n\n".join([d.page_content for d in docs])chain = ({"context": retriever | format_docs, "question": RunnablePassthrough()}| prompt| llm| StrOutputParser()
)response = chain.invoke(query)
print("RAG 输出结果:",response)print("LLM 输出结果:",llm(query))

6,图文测试代码

if __name__ == "__main__":llm = MyGame()     # 上面代码有定义print(llm("这张图里的是什么。", image_path="E:\code_llm_workspace\static\images\\xxx.jpeg"))

相关文章:

LangChain + llamaFactory + Qwen2-7b-VL 构建本地RAG问答系统

单纯仅靠LLM会产生误导性的 “幻觉”,训练数据会过时,处理特定知识时效率不高,缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。 正是在这样的背景下,检索增强生成技术(Retrieval-Augmented Generati…...

【自然语言处理(NLP)】介绍、发展史

文章目录 介绍发展史1. 规则驱动时期(20世纪50年代-80年代)技术特点标志性成果 2. 统计方法兴起(1990年代-2000年代)技术特点标志性成果 3. 神经网络复兴(2010年代初至今)技术特点标志性成果 4. 集成与应用…...

1.CSS的三大特性

css有三个非常重要的三个特性&#xff1a;层叠性、继承性、优先级 1.1 层叠性 想通选择器给设置想听的样式&#xff0c;此时一个样式就会覆盖&#xff08;层叠&#xff09;另一个冲突的样式。层叠性主要是解决样式冲突的问题。 <!DOCTYPE html> <html lang"en&…...

【分布式日志篇】从工具选型到实战部署:全面解析日志采集与管理路径

网罗开发 &#xff08;小红书、快手、视频号同名&#xff09; 大家好&#xff0c;我是 展菲&#xff0c;目前在上市企业从事人工智能项目研发管理工作&#xff0c;平时热衷于分享各种编程领域的软硬技能知识以及前沿技术&#xff0c;包括iOS、前端、Harmony OS、Java、Python等…...

基于springcloud汽车信息分析与可视化系统

基于Spring Cloud的汽车信息分析与可视化系统是一款旨在整合、分析汽车相关数据并以直观可视化方式呈现的应用系统。 一、系统架构 该系统基于先进的Spring Cloud架构构建&#xff0c;充分利用其分布式、微服务特性&#xff0c;确保系统具备高可用性、可扩展性和灵活性。Spri…...

TOGAF之架构标准规范-信息系统架构 | 数据架构

TOGAF是工业级的企业架构标准规范&#xff0c;信息系统架构阶段是由数据架构阶段以及应用架构阶段构成&#xff0c;本文主要描述信息系统架构阶段中的数据架构阶段。 如上所示&#xff0c;信息系统架构&#xff08;Information Systems Architectures&#xff09;在TOGAF标准规…...

Databend x 沉浸式翻译 | 基于 Databend Cloud 构建高效低成本的业务数据分析体系

「沉浸式翻译」是一个非常流行的双语对照网页翻译扩展工具&#xff0c;用户可以用它来即时翻译外文网页、PDF 文档、ePub 电子书、字幕等。它不仅可以实现原文加译文实时双语对照显示&#xff0c;还支持 Google、OpenAI、DeepL、微软、Gemini、Claude 等数十家翻译平台服务的自…...

cuda的并行运算介绍

cuda是如何使用GPU并行运算的&#xff1a; 以一个函数为例&#xff1a; duplicateWithKeys << <(P 255) / 256, 256 >> > (P,geomState.means2D,geomState.depths,geomState.point_offsets,binningState.point_list_keys_unsorted,binningState.point_list_…...

「全网最细 + 实战源码案例」设计模式——抽象工厂模式

核心思想 抽象工厂模式是一种创建型设计模式&#xff0c;它提供一个接口&#xff0c;用于创建一系列相关或互相依赖的对象&#xff0c;而无需指定它们的具体类。抽象工厂模式解决了产品族的问题&#xff0c;可以管理和创建一组相关的产品。 结构 1. 抽象工厂 定义创建一些列…...

领域驱动设计(DDD)四 订单管理系统实践步骤

以下是基于 领域驱动设计&#xff08;DDD&#xff09; 的订单管理系统实践步骤&#xff0c;系统功能主要包括订单的创建、更新、查询和状态管理&#xff0c;采用 Spring Boot 框架进行实现。 1. 需求分析 订单管理系统的基本功能&#xff1a; 订单创建&#xff1a;用户下单创…...

leetcode 面试经典 150 题:简化路径

链接简化路径题序号71题型字符串解法栈难度中等熟练度✅✅✅ 题目 给你一个字符串 path &#xff0c;表示指向某一文件或目录的 Unix 风格 绝对路径 &#xff08;以 ‘/’ 开头&#xff09;&#xff0c;请你将其转化为 更加简洁的规范路径。 在 Unix 风格的文件系统中规则如下…...

基于 STM32 的智能农业温室控制系统设计

1. 引言 随着农业现代化的发展&#xff0c;智能农业温室控制系统对于提高农作物产量和质量具有重要意义。该系统能够实时监测温室内的环境参数&#xff0c;如温度、湿度、光照强度和土壤湿度等&#xff0c;并根据这些参数自动调节温室设备&#xff0c;如通风扇、加热器、加湿器…...

【Spring Boot】掌握 Spring 事务:隔离级别与传播机制解读与应用

前言 &#x1f31f;&#x1f31f;本期讲解关于spring 事务传播机制介绍~~~ &#x1f308;感兴趣的小伙伴看一看小编主页&#xff1a;GGBondlctrl-CSDN博客 &#x1f525; 你的点赞就是小编不断更新的最大动力 &#x1f386;那么废话…...

【Postgres_Python】使用python脚本将多个PG数据库合并为一个PG数据库

需要合并的多个PG数据库表个数和结构一致&#xff0c;这里提供一种思路&#xff0c;选择sql语句insert插入的方式进行&#xff0c;即将其他PG数据库的每个表内容插入到一个PG数据库中完成数据库合并 示例代码说明&#xff1a; 选择一个数据库导出表结构为.sql文件&#xff08…...

Tailwind CSS v4.0 发布

Holy shit its actually done &#xff01; 1 月 22 日&#xff0c;Tailwind CSS 正式发布了 4.0 版本&#xff0c;针对性能和灵活性进行了优化&#xff0c;重新构想了配置和定制体验&#xff0c;并充分利用了 Web 平台提供的最新进展。 新的高性能引擎- 完整构建速度提高 5 …...

pandas基础:文件的读取和写入

文件的读取和写入 读取csv文件 csv文件&#xff1a; name,age,city Alice,25,New York Bob,30,Los Angelesread_csv(filename) header&#xff1a;如 何处理文件的第一行。header0将第一行作为列名&#xff0c;headerNone表示文件中没有列名&#xff0c;所有行都是数据。 im…...

【MySQL — 数据库增删改查操作】深入解析MySQL的create insert 操作

数据库CRUD操作 1 CRUD简介 CURD是对数据库中的记录进行基本的增删改查操作: 2. Create 新增 语法 INSERT [INTO] table_name[(column [&#xff0c;column] ...)] VALUES(value_list)[&#xff0c;(value_list)] ... # value 后面的列的个数和类型&#xff0c;要和表结构匹配…...

每日OJ_牛客_小红的子串_滑动窗口+前缀和_C++_Java

目录 牛客_小红的子串_滑动窗口前缀和 题目解析 C代码 Java代码 牛客_小红的子串_滑动窗口前缀和 小红的子串 描述&#xff1a; 小红拿到了一个长度为nnn的字符串&#xff0c;她准备选取一段子串&#xff0c;满足该子串中字母的种类数量在[l,r]之间。小红想知道&…...

HTTP 配置与应用(局域网)

想做一个自己学习的有关的csdn账号&#xff0c;努力奋斗......会更新我计算机网络实验课程的所有内容&#xff0c;还有其他的学习知识^_^&#xff0c;为自己巩固一下所学知识&#xff0c;下次更新HTTP 配置与应用&#xff08;不同网段&#xff09;。 我是一个萌新小白&#xf…...

ultralytics 是什么?

ultralytics 是一个用于计算机视觉任务的 Python 库&#xff0c;专注于提供高效、易用的目标检测、实例分割和图像分类工具。它最著名的功能是实现 YOLO&#xff08;You Only Look Once&#xff09; 系列模型&#xff0c;特别是最新的 YOLOv8。 1. YOLO 是什么&#xff1f; YO…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...

TJCTF 2025

还以为是天津的。这个比较容易&#xff0c;虽然绕了点弯&#xff0c;可还是把CP AK了&#xff0c;不过我会的别人也会&#xff0c;还是没啥名次。记录一下吧。 Crypto bacon-bits with open(flag.txt) as f: flag f.read().strip() with open(text.txt) as t: text t.read…...

Linux操作系统共享Windows操作系统的文件

目录 一、共享文件 二、挂载 一、共享文件 点击虚拟机选项-设置 点击选项&#xff0c;设置文件夹共享为总是启用&#xff0c;点击添加&#xff0c;可添加需要共享的文件夹 查询是否共享成功 ls /mnt/hgfs 如果显示Download&#xff08;这是我共享的文件夹&#xff09;&…...