当前位置: 首页 > news >正文

OpenCV:高通滤波之索贝尔、沙尔和拉普拉斯

目录

简述

什么是高通滤波?

高通滤波的概念

应用场景

索贝尔算子

 算子公式

实现代码

特点

沙尔算子

算子公式

实现代码

特点

拉普拉斯算子

算子公式

实现代码

特点

高通滤波器的对比与应用场景


相关阅读

OpenCV:图像滤波、卷积与卷积核-CSDN博客

OpenCV:图像处理中的低通滤波-CSDN博客


简述

高通滤波是一种增强图像高频分量的处理方法,常用于边缘检测和特征提取。在图像处理中,高通滤波可以突出图像中的边缘、轮廓和细节信息,而抑制平滑区域(低频分量)。

本文将重点介绍三种常见的高通滤波器:索贝尔(Sobel)、沙尔(Scharr) 和 拉普拉斯(Laplacian),并结合代码和应用场景进行讲解。


什么是高通滤波?

高通滤波的概念

高通滤波是对图像进行卷积操作,以保留图像中的快速变化部分(如边缘和细节),同时抑制低频分量(如大面积平坦区域)。

应用场景

  • 边缘检测:提取物体轮廓和边界。
  • 特征提取:用于后续计算机视觉任务(如目标检测)。
  • 图像锐化:增强图像清晰度。

索贝尔算子

索贝尔算子是一种经典的边缘检测算子,通过计算像素梯度,检测图像的水平和垂直边缘。

 算子公式

水平边缘检测

Kernel_{x} = \begin{bmatrix} -1 & 0 & 1\\ -2 & 0 & 2\\ -1 & 0 & 1 \end{bmatrix}

垂直边缘检测

Kernel_{y} = \begin{bmatrix} -1 & -2 & -1\\ 0 & 0 & 0\\ 1 & 2 & 1 \end{bmatrix}

实现代码

import cv2
import numpy as np# 读取图像
image = cv2.imread("D:\\resource\\filter\\shudu.jpg")
image = cv2.resize(image, (400,400))# 检测单方向效果好, 同时双方向效果差# y方向 图像边缘
result1 = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=5)# x方向 图像边缘
result2 = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=5)# 合并
result = cv2.add(result1, result2)cv2.imshow("image", image)
cv2.imshow("result1", result1)
cv2.imshow("result2", result2)
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

特点

  • 能检测水平和垂直边缘。
  • 可调整核大小(ksize)以控制平滑程度。

运行结果: y方向和x方向

运行结果: 原图和合成后的图


沙尔算子

沙尔算子是对索贝尔算子的优化版本,它在小窗口(如 3×3)中提供更高的精度。

算子公式

水平边缘检测

Kernel_{x} = \begin{bmatrix} 3 & 0 & -3\\ 10 & 0 & -10\\ 3 & 0 & -3 \end{bmatrix}

垂直边缘检测

Kernel_{y} = \begin{bmatrix} 3 & 10 & 3\\ 0 & 0 & 0\\ -3 & -10 & -3 \end{bmatrix}

实现代码

import cv2
import numpy as np# 读取图像
image = cv2.imread("D:\\resource\\filter\\shudu.jpg")
image = cv2.resize(image, (400,400))# 与Sobel类似, 只能求x或y方向的边缘# y方向 图像边缘
result1 = cv2.Scharr(image, cv2.CV_64F, 1, 0)# x方向 图像边缘
result2 = cv2.Scharr(image, cv2.CV_64F, 0, 1)# 合并
result = cv2.add(result1, result2)cv2.imshow("image", image)
cv2.imshow("result1", result1)
cv2.imshow("result2", result2)
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

特点

  • 在处理高频变化的边缘时,精度高于索贝尔算子。
  • 适用于对边缘检测精度要求较高的场景。

拉普拉斯算子

拉普拉斯算子是一种二阶导数算子,结合水平和垂直方向的梯度信息,用于检测图像的边缘。

算子公式

拉普拉斯算子的卷积核常见形式为:

Kernel = \begin{bmatrix} 0 & -1 & 0\\ -1 & 4 & -1\\ 0 & -1 & 0 \end{bmatrix}

实现代码

import cv2
import numpy as np# 读取图像
image = cv2.imread("D:\\resource\\filter\\shudu.jpg")
image = cv2.resize(image, (400,400))# 可以同时求2个方向的边缘,但是对噪音敏感,需要先降噪
result = cv2.Laplacian(image, cv2.CV_64F, ksize=5)cv2.imshow("image", image)
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

特点

  • 同时检测水平、垂直和对角线方向的边缘。
  • 对噪声敏感,适合平滑处理后的图像。

运行结果 


高通滤波器的对比与应用场景

算子特点适用场景
索贝尔结合一阶导数,能检测水平和垂直边缘边缘检测、特征提取
沙尔索贝尔的改进版,适合处理高频变化区域,精度更高精细边缘检测
拉普拉斯二阶导数算子,检测方向无关的边缘,灵敏度高图像锐化、边缘增强

相关文章:

OpenCV:高通滤波之索贝尔、沙尔和拉普拉斯

目录 简述 什么是高通滤波? 高通滤波的概念 应用场景 索贝尔算子 算子公式 实现代码 特点 沙尔算子 算子公式 实现代码 特点 拉普拉斯算子 算子公式 实现代码 特点 高通滤波器的对比与应用场景 相关阅读 OpenCV:图像滤波、卷积与卷积核…...

UDP 广播组播点播的区别及联系

1、网络IP地址的分类 组播地址是分类编址的IPv4地址中的D类地址,又叫多播地址,他的前四位必须是1110,所以网络地址的二进制取值范围是11100000~11101111对应的十进制为 224~~239。所以以224~239开头的网络地址都是组播地址。 组播地址的功能…...

STM32补充——IAP

0 前置知识: FLASH相关内容:前往STM32补充——FLASH STM32三种烧录方式(看看就行): 1.ISP:In System Programming(在系统编程) 执行芯片厂商的 Bootloader 程序进入 ISP 模式&…...

Jetson Xavier NX (ARM) 使用 PyTorch 安装 Open3D-ML 指南

由于 Jetson 为 ARM64 (aarch64) 的系统架构,所以不能用 pip install 直接安装,需要通过源码编译。 升级系统 JetPack 由于 Open3D-ML 目前只支持 CUDA 10.0 以及 CUDA 11.*,并且 JetPack 的 CUDA 开发环境只有10.2、11.4以及12.2&#xff0…...

【C++高并发服务器WebServer】-1:Linux中父子进程fork创建及关系、GDB多进程调试

本文目录 一、进程创建二、GDB多进程调试 一、进程创建 在Linux中输入man 2 fork可以查看man文档中的fork的相关函数信息。 fork的作用就是创建一个子进程。 通过fork我们可以知道,创建子进程的时候,复制父进程的信息。 我们看看翻译的man文档信息&am…...

C语言数组详解:从基础到进阶的全面解析

在C语言中,数组是一种基本的数据结构,用于存储多个相同类型的数据。数组的引入使得C语言能够高效地存储和操作大量数据。在任何一个C语言程序中,数组都发挥着极其重要的作用。无论是在算法实现、数据存储、还是在复杂程序的设计中&#xff0c…...

docker的前世今生

docker来自哪里? 从我们运维部署的历史来看,宿主机从最初的物理机到虚拟机,再到docker,一步步演进到现在。技术演进其实是为了解决当前技术的痛点,那我们来看看有哪些痛点以及如何克服痛点的。 物理机 一般来说&…...

python实现施瓦茨-克里斯托费尔【全网首个】根据用户输入推测函数

上代码&#xff1a; from sympy import symbols, integrate, simplify from sympy.plotting import plotn int(input("n:")) if n < 2:print("Error: Must n > 2") i 0 a [] aef [] A [] x, y symbols(x y) z, w symbols(z w)while i < n…...

c语言中的数组(上)

数组的概念 数组是⼀组相同类型元素的集合&#xff1b; 数组中存放的是1个或者多个数据&#xff0c;但是数组元素个数不能为0。 数组中存放的多个数据&#xff0c;类型是相同的。 数组分为⼀维数组和多维数组&#xff0c;多维数组⼀般⽐较多⻅的是⼆维数组。 数组创建 在C语言…...

Unity3D仿星露谷物语开发25之创建时钟界面

1、目标 在时钟界面显示当前时钟信息&#xff0c;同时设置特殊按钮可以快速推进时间用于测试。 2、创建GameClock.cs脚本 在Assets -> Scripts -> TimeSystem目录下创建GameClock.cs脚本。 代码如下&#xff1a; using System.Collections; using System.Collections…...

数据结构测试题1

一、选择题: 1&#xff0e;若长度为n的钱性表采用顺序存储结构&#xff0c;删除它的第i数据元素之前&#xff0c;需要先依次向前移动( )个数据元素。( C ) A .n-i B.ni C.n-i-1 D.n-i1 2.在单链表中&#xff0c;已知q指的结点是p指的结点的直接前驱结点&am…...

android wifi AsyncChannel(WifiManager和WifiP2pManager)

AynscChannel的讲解 [Android]AsyncChannel介绍-CSDN博客 WifiP2pManager里的channel的使用理解 WifiP2pManager.java public void createGroup(Channel c, ActionListener listener) {checkChannel(c);c.mAsyncChannel.sendMessage(CREATE_GROUP, WifiP2pGroup.NETWORK_ID_PE…...

【Image Captioning】DynRefer

DynRefer是由中国科学院大学于2024年提出的用于1种用于区域级多模态任务的模型。DynRefer 通过模拟人类视觉认知过程&#xff0c;显著提升了区域级多模态识别能力。通过引入人眼的动态分辨率机制&#xff0c; 能够以同时完成区域识别、区域属性检测和区域字幕生成任务。 文章链…...

Midjourney基础-常用修饰词+权重的用法大全

用好修饰词很关键 Midjourney要用除了掌握好提示词的写法&#xff0c;按照上一篇《做Midjourney最好图文教程-提示词公式以及高级参数讲解》画面主体 场景氛围 主体行为 构图方式 艺术风格 图像质量。 要画出有质感的内容我们必须要掌握好“修饰词”&#xff0c;这些修饰…...

没有屋檐的房子-023粪堆旁边的舞蹈

爱美是天性&#xff0c;贫苦的农村人也一样&#xff0c;贫苦的时代也一样。 本世纪&#xff0c;广场舞在华夏大地遍地开花&#xff0c;甚至都传到了外面。但是广场舞这种舞蹈形式并不是互联网时代的特产&#xff0c;也不是电声设备日益高级和普及时代的特产&#xff0c;更不是大…...

基于Docker的Kafka分布式集群

目录 1. 说明 2. 服务器规划 3. docker-compose文件 kafka{i}.yaml kafka-ui.yaml 4. kafka-ui配置集群监控 5. 参数表 6. 测试脚本 生产者-异步生产: AsyncKafkaProducer1.py 消费者-异步消费: AsyncKafkaConsumer1.py 7. 参考 1. 说明 创建一个本地开发环境所需的k…...

【博客之星】年度总结:在云影与墨香中探寻成长的足迹

&#x1f407;明明跟你说过&#xff1a;个人主页 &#x1f516;行路有良友&#xff0c;便是天堂&#x1f516; 目录 一、年度回顾 1、创作历程 2、个人成长 3、个人生活与博客事业 二、技术总结 1、赛道选择 2、技术工具 3、实战项目 三、前景与展望 1、云原生未来…...

SpringBoot的Swagger配置

一、Swagger配置 1.添加依赖 <dependency><groupId>com.github.xiaoymin</groupId><artifactId>knife4j-spring-boot-starter</artifactId><version>3.0.2</version> </dependency> 2.修改WebMvcConfig Slf4j Configurat…...

machine learning knn算法之使用KNN对鸢尾花数据集进行分类

通过导入必要的scikit-learn导入必要的库&#xff0c;加载给定的数据&#xff0c;划分测试集和训练集之后训练预测和评估即可 具体代码如下&#xff1a; import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split f…...

C语言练习(16)

猴子吃桃问题。猴子第一天摘下若干个桃子&#xff0c;当即吃了一半&#xff0c;还不过瘾&#xff0c;又多吃了一个。第二天早上又将剩下的桃子吃掉一半&#xff0c;又多吃了一个。以后每天早上都吃了前一天剩下的一半加一个。到第10天早上想再吃时&#xff0c;见只剩一个桃子了…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

HTML 列表、表格、表单

1 列表标签 作用&#xff1a;布局内容排列整齐的区域 列表分类&#xff1a;无序列表、有序列表、定义列表。 例如&#xff1a; 1.1 无序列表 标签&#xff1a;ul 嵌套 li&#xff0c;ul是无序列表&#xff0c;li是列表条目。 注意事项&#xff1a; ul 标签里面只能包裹 li…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...