当前位置: 首页 > news >正文

OpenCV:高通滤波之索贝尔、沙尔和拉普拉斯

目录

简述

什么是高通滤波?

高通滤波的概念

应用场景

索贝尔算子

 算子公式

实现代码

特点

沙尔算子

算子公式

实现代码

特点

拉普拉斯算子

算子公式

实现代码

特点

高通滤波器的对比与应用场景


相关阅读

OpenCV:图像滤波、卷积与卷积核-CSDN博客

OpenCV:图像处理中的低通滤波-CSDN博客


简述

高通滤波是一种增强图像高频分量的处理方法,常用于边缘检测和特征提取。在图像处理中,高通滤波可以突出图像中的边缘、轮廓和细节信息,而抑制平滑区域(低频分量)。

本文将重点介绍三种常见的高通滤波器:索贝尔(Sobel)、沙尔(Scharr) 和 拉普拉斯(Laplacian),并结合代码和应用场景进行讲解。


什么是高通滤波?

高通滤波的概念

高通滤波是对图像进行卷积操作,以保留图像中的快速变化部分(如边缘和细节),同时抑制低频分量(如大面积平坦区域)。

应用场景

  • 边缘检测:提取物体轮廓和边界。
  • 特征提取:用于后续计算机视觉任务(如目标检测)。
  • 图像锐化:增强图像清晰度。

索贝尔算子

索贝尔算子是一种经典的边缘检测算子,通过计算像素梯度,检测图像的水平和垂直边缘。

 算子公式

水平边缘检测

Kernel_{x} = \begin{bmatrix} -1 & 0 & 1\\ -2 & 0 & 2\\ -1 & 0 & 1 \end{bmatrix}

垂直边缘检测

Kernel_{y} = \begin{bmatrix} -1 & -2 & -1\\ 0 & 0 & 0\\ 1 & 2 & 1 \end{bmatrix}

实现代码

import cv2
import numpy as np# 读取图像
image = cv2.imread("D:\\resource\\filter\\shudu.jpg")
image = cv2.resize(image, (400,400))# 检测单方向效果好, 同时双方向效果差# y方向 图像边缘
result1 = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=5)# x方向 图像边缘
result2 = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=5)# 合并
result = cv2.add(result1, result2)cv2.imshow("image", image)
cv2.imshow("result1", result1)
cv2.imshow("result2", result2)
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

特点

  • 能检测水平和垂直边缘。
  • 可调整核大小(ksize)以控制平滑程度。

运行结果: y方向和x方向

运行结果: 原图和合成后的图


沙尔算子

沙尔算子是对索贝尔算子的优化版本,它在小窗口(如 3×3)中提供更高的精度。

算子公式

水平边缘检测

Kernel_{x} = \begin{bmatrix} 3 & 0 & -3\\ 10 & 0 & -10\\ 3 & 0 & -3 \end{bmatrix}

垂直边缘检测

Kernel_{y} = \begin{bmatrix} 3 & 10 & 3\\ 0 & 0 & 0\\ -3 & -10 & -3 \end{bmatrix}

实现代码

import cv2
import numpy as np# 读取图像
image = cv2.imread("D:\\resource\\filter\\shudu.jpg")
image = cv2.resize(image, (400,400))# 与Sobel类似, 只能求x或y方向的边缘# y方向 图像边缘
result1 = cv2.Scharr(image, cv2.CV_64F, 1, 0)# x方向 图像边缘
result2 = cv2.Scharr(image, cv2.CV_64F, 0, 1)# 合并
result = cv2.add(result1, result2)cv2.imshow("image", image)
cv2.imshow("result1", result1)
cv2.imshow("result2", result2)
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

特点

  • 在处理高频变化的边缘时,精度高于索贝尔算子。
  • 适用于对边缘检测精度要求较高的场景。

拉普拉斯算子

拉普拉斯算子是一种二阶导数算子,结合水平和垂直方向的梯度信息,用于检测图像的边缘。

算子公式

拉普拉斯算子的卷积核常见形式为:

Kernel = \begin{bmatrix} 0 & -1 & 0\\ -1 & 4 & -1\\ 0 & -1 & 0 \end{bmatrix}

实现代码

import cv2
import numpy as np# 读取图像
image = cv2.imread("D:\\resource\\filter\\shudu.jpg")
image = cv2.resize(image, (400,400))# 可以同时求2个方向的边缘,但是对噪音敏感,需要先降噪
result = cv2.Laplacian(image, cv2.CV_64F, ksize=5)cv2.imshow("image", image)
cv2.imshow("result", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

特点

  • 同时检测水平、垂直和对角线方向的边缘。
  • 对噪声敏感,适合平滑处理后的图像。

运行结果 


高通滤波器的对比与应用场景

算子特点适用场景
索贝尔结合一阶导数,能检测水平和垂直边缘边缘检测、特征提取
沙尔索贝尔的改进版,适合处理高频变化区域,精度更高精细边缘检测
拉普拉斯二阶导数算子,检测方向无关的边缘,灵敏度高图像锐化、边缘增强

相关文章:

OpenCV:高通滤波之索贝尔、沙尔和拉普拉斯

目录 简述 什么是高通滤波? 高通滤波的概念 应用场景 索贝尔算子 算子公式 实现代码 特点 沙尔算子 算子公式 实现代码 特点 拉普拉斯算子 算子公式 实现代码 特点 高通滤波器的对比与应用场景 相关阅读 OpenCV:图像滤波、卷积与卷积核…...

UDP 广播组播点播的区别及联系

1、网络IP地址的分类 组播地址是分类编址的IPv4地址中的D类地址,又叫多播地址,他的前四位必须是1110,所以网络地址的二进制取值范围是11100000~11101111对应的十进制为 224~~239。所以以224~239开头的网络地址都是组播地址。 组播地址的功能…...

STM32补充——IAP

0 前置知识: FLASH相关内容:前往STM32补充——FLASH STM32三种烧录方式(看看就行): 1.ISP:In System Programming(在系统编程) 执行芯片厂商的 Bootloader 程序进入 ISP 模式&…...

Jetson Xavier NX (ARM) 使用 PyTorch 安装 Open3D-ML 指南

由于 Jetson 为 ARM64 (aarch64) 的系统架构,所以不能用 pip install 直接安装,需要通过源码编译。 升级系统 JetPack 由于 Open3D-ML 目前只支持 CUDA 10.0 以及 CUDA 11.*,并且 JetPack 的 CUDA 开发环境只有10.2、11.4以及12.2&#xff0…...

【C++高并发服务器WebServer】-1:Linux中父子进程fork创建及关系、GDB多进程调试

本文目录 一、进程创建二、GDB多进程调试 一、进程创建 在Linux中输入man 2 fork可以查看man文档中的fork的相关函数信息。 fork的作用就是创建一个子进程。 通过fork我们可以知道,创建子进程的时候,复制父进程的信息。 我们看看翻译的man文档信息&am…...

C语言数组详解:从基础到进阶的全面解析

在C语言中,数组是一种基本的数据结构,用于存储多个相同类型的数据。数组的引入使得C语言能够高效地存储和操作大量数据。在任何一个C语言程序中,数组都发挥着极其重要的作用。无论是在算法实现、数据存储、还是在复杂程序的设计中&#xff0c…...

docker的前世今生

docker来自哪里? 从我们运维部署的历史来看,宿主机从最初的物理机到虚拟机,再到docker,一步步演进到现在。技术演进其实是为了解决当前技术的痛点,那我们来看看有哪些痛点以及如何克服痛点的。 物理机 一般来说&…...

python实现施瓦茨-克里斯托费尔【全网首个】根据用户输入推测函数

上代码&#xff1a; from sympy import symbols, integrate, simplify from sympy.plotting import plotn int(input("n:")) if n < 2:print("Error: Must n > 2") i 0 a [] aef [] A [] x, y symbols(x y) z, w symbols(z w)while i < n…...

c语言中的数组(上)

数组的概念 数组是⼀组相同类型元素的集合&#xff1b; 数组中存放的是1个或者多个数据&#xff0c;但是数组元素个数不能为0。 数组中存放的多个数据&#xff0c;类型是相同的。 数组分为⼀维数组和多维数组&#xff0c;多维数组⼀般⽐较多⻅的是⼆维数组。 数组创建 在C语言…...

Unity3D仿星露谷物语开发25之创建时钟界面

1、目标 在时钟界面显示当前时钟信息&#xff0c;同时设置特殊按钮可以快速推进时间用于测试。 2、创建GameClock.cs脚本 在Assets -> Scripts -> TimeSystem目录下创建GameClock.cs脚本。 代码如下&#xff1a; using System.Collections; using System.Collections…...

数据结构测试题1

一、选择题: 1&#xff0e;若长度为n的钱性表采用顺序存储结构&#xff0c;删除它的第i数据元素之前&#xff0c;需要先依次向前移动( )个数据元素。( C ) A .n-i B.ni C.n-i-1 D.n-i1 2.在单链表中&#xff0c;已知q指的结点是p指的结点的直接前驱结点&am…...

android wifi AsyncChannel(WifiManager和WifiP2pManager)

AynscChannel的讲解 [Android]AsyncChannel介绍-CSDN博客 WifiP2pManager里的channel的使用理解 WifiP2pManager.java public void createGroup(Channel c, ActionListener listener) {checkChannel(c);c.mAsyncChannel.sendMessage(CREATE_GROUP, WifiP2pGroup.NETWORK_ID_PE…...

【Image Captioning】DynRefer

DynRefer是由中国科学院大学于2024年提出的用于1种用于区域级多模态任务的模型。DynRefer 通过模拟人类视觉认知过程&#xff0c;显著提升了区域级多模态识别能力。通过引入人眼的动态分辨率机制&#xff0c; 能够以同时完成区域识别、区域属性检测和区域字幕生成任务。 文章链…...

Midjourney基础-常用修饰词+权重的用法大全

用好修饰词很关键 Midjourney要用除了掌握好提示词的写法&#xff0c;按照上一篇《做Midjourney最好图文教程-提示词公式以及高级参数讲解》画面主体 场景氛围 主体行为 构图方式 艺术风格 图像质量。 要画出有质感的内容我们必须要掌握好“修饰词”&#xff0c;这些修饰…...

没有屋檐的房子-023粪堆旁边的舞蹈

爱美是天性&#xff0c;贫苦的农村人也一样&#xff0c;贫苦的时代也一样。 本世纪&#xff0c;广场舞在华夏大地遍地开花&#xff0c;甚至都传到了外面。但是广场舞这种舞蹈形式并不是互联网时代的特产&#xff0c;也不是电声设备日益高级和普及时代的特产&#xff0c;更不是大…...

基于Docker的Kafka分布式集群

目录 1. 说明 2. 服务器规划 3. docker-compose文件 kafka{i}.yaml kafka-ui.yaml 4. kafka-ui配置集群监控 5. 参数表 6. 测试脚本 生产者-异步生产: AsyncKafkaProducer1.py 消费者-异步消费: AsyncKafkaConsumer1.py 7. 参考 1. 说明 创建一个本地开发环境所需的k…...

【博客之星】年度总结:在云影与墨香中探寻成长的足迹

&#x1f407;明明跟你说过&#xff1a;个人主页 &#x1f516;行路有良友&#xff0c;便是天堂&#x1f516; 目录 一、年度回顾 1、创作历程 2、个人成长 3、个人生活与博客事业 二、技术总结 1、赛道选择 2、技术工具 3、实战项目 三、前景与展望 1、云原生未来…...

SpringBoot的Swagger配置

一、Swagger配置 1.添加依赖 <dependency><groupId>com.github.xiaoymin</groupId><artifactId>knife4j-spring-boot-starter</artifactId><version>3.0.2</version> </dependency> 2.修改WebMvcConfig Slf4j Configurat…...

machine learning knn算法之使用KNN对鸢尾花数据集进行分类

通过导入必要的scikit-learn导入必要的库&#xff0c;加载给定的数据&#xff0c;划分测试集和训练集之后训练预测和评估即可 具体代码如下&#xff1a; import numpy as np from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split f…...

C语言练习(16)

猴子吃桃问题。猴子第一天摘下若干个桃子&#xff0c;当即吃了一半&#xff0c;还不过瘾&#xff0c;又多吃了一个。第二天早上又将剩下的桃子吃掉一半&#xff0c;又多吃了一个。以后每天早上都吃了前一天剩下的一半加一个。到第10天早上想再吃时&#xff0c;见只剩一个桃子了…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...

Xela矩阵三轴触觉传感器的工作原理解析与应用场景

Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知&#xff0c;帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量&#xff0c;能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度&#xff0c;还为机器人、医疗设备和制造业的智…...

VisualXML全新升级 | 新增数据库编辑功能

VisualXML是一个功能强大的网络总线设计工具&#xff0c;专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑&#xff08;如DBC、LDF、ARXML、HEX等&#xff09;&#xff0c;并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...