当前位置: 首页 > news >正文

二叉树的所有路径(力扣257)

因为题目要求路径是从上到下的,所以最好采用前序遍历。这样可以保证按从上到下的顺序将节点的值存入一个路径数组中。另外,此题还有一个难点就是如何求得所有路径。为了解决这个问题,我们需要用到回溯。回溯和递归不分家,每递归一次,我们就回溯一次,这样就能保证回到原来的位置,进而递归我们没有走过的节点,得到新的路径。大体思路就是这样,大家可以结合我的代码以及注释理解这道题目。另外,如果大家的二叉树遍历还不熟悉的话,最好先去看一下我的关于二叉树遍历的博客,再来看这道题,否则肯定会比较懵逼。

代码及注释如下:

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:
//参数有三个,一个为工作指针,一个为记录路径的数组,一个为储存最后结果的字符串数组
//注意千万不要将返回值设置为字符串数组,因为我们不需要每次递归都返回字符串,这跟之前每次递归返回数值不一样,我们这里将存储结果的容器放在参数引用就可以了void travel(TreeNode* cur,vector<int>& path,vector<string>& result){//这种记录路径的题目的递归终止条件不是遍历到空节点,而是遍历到叶子结点//为了确保将叶子结点也存入路径数组,需要在终止条件之前就push,否则会遗漏path.push_back(cur -> val);//处理逻辑(中)//终止条件:遍历到叶子节点if(cur -> left == NULL && cur -> right == NULL){//将数字转化为题目所规定的字符串string spath;for(int i = 0;i < path.size() - 1;i++){spath += to_string(path[i]);spath += "->";}spath += to_string(path[path.size() - 1]);result.push_back(spath);return;}if (cur->left) { //递归左孩子 travel(cur->left, path, result);path.pop_back(); // 回溯}if (cur->right) { // 递归右孩子travel(cur->right, path, result);path.pop_back(); // 回溯}}vector<string> binaryTreePaths(TreeNode* root) {vector<int> path;vector<string> result;if(root == NULL) return result;travel(root,path,result);return result;}
};

相关文章:

二叉树的所有路径(力扣257)

因为题目要求路径是从上到下的&#xff0c;所以最好采用前序遍历。这样可以保证按从上到下的顺序将节点的值存入一个路径数组中。另外&#xff0c;此题还有一个难点就是如何求得所有路径。为了解决这个问题&#xff0c;我们需要用到回溯。回溯和递归不分家&#xff0c;每递归一…...

Python OrderedDict 实现 Least Recently used(LRU)缓存

OrderedDict 实现 Least Recently used&#xff08;LRU&#xff09;缓存 引言正文 引言 LRU 缓存是一种缓存替换策略&#xff0c;当缓存空间不足时&#xff0c;会移除最久未使用的数据以腾出空间存放新的数据。LRU 缓存的特点&#xff1a; 有限容量&#xff1a;缓存拥有固定的…...

LabVIEW项目中的工控机与普通电脑选择

工控机&#xff08;Industrial PC&#xff09;与普通电脑在硬件设计、性能要求、稳定性、环境适应性等方面存在显著差异。了解这些区别对于在LabVIEW项目中选择合适的硬件至关重要。下面将详细分析这两种设备的主要差异&#xff0c;并为LabVIEW项目中的选择提供指导。 ​ 硬件设…...

Ansys Speos | Speos Meshing 网格最佳实践

概述 网格划分是在各种计算应用中处理3D几何的基本步骤&#xff1a; 表面和体积&#xff1a;网格允许通过将复杂的表面和体积分解成更简单的几何元素&#xff08;如三角形、四边形、四面体或六面体&#xff09;来表示复杂的表面和体积。 模拟和渲染&#xff1a;网格是创建离散…...

elasticsearch segment数量对读写性能的影响

index.merge.policy.segments_per_tier 是一个配置选项&#xff0c;用于控制 Elasticsearch 中段&#xff08;segment&#xff09;合并策略的行为。它定义了在每一层的段合并过程中&#xff0c;允许存在的最大段数量。调整这个参数可以优化索引性能和资源使用。 假设你有一个索…...

全同态加密理论、生态现状与未来展望(中2)

《全同态加密理论、生态现状与未来展望》系列由lynndell2010gmail.com和mutourend2010gmail.com整理原创发布&#xff0c;分为上中下三个系列&#xff1a; 全同态加密理论、生态现状与未来展望&#xff08;上&#xff09;&#xff1a;专注于介绍全同态加密理论知识。全同态加密…...

鸿蒙UI(ArkUI-方舟UI框架)-开发布局

返回主章节 → 鸿蒙UI&#xff08;ArkUI-方舟UI框架&#xff09; 开发布局 1、布局概述 1&#xff09;布局结构 2&#xff09;布局元素组成 3&#xff09;如何选择布局 声明式UI提供了以下10种常见布局&#xff0c;开发者可根据实际应用场景选择合适的布局进行页面开发。 …...

RPC是什么?和HTTP区别?

RPC 是什么&#xff1f;HTTP 是什么&#xff1f; 作为一个程序员&#xff0c;假设我们需要从A电脑的进程发送一段数据到B电脑的进程&#xff0c;我们一般会在代码中使用 Socket 进行编程。 此时&#xff0c;可选性一般就是 TCP 和 UDP 二选一&#xff0c;由于 TCP 可靠、UDP 不…...

Linux C\C++编程-建立文件和内存映射

【图书推荐】《Linux C与C一线开发实践&#xff08;第2版&#xff09;》_linux c与c一线开发实践pdf-CSDN博客 《Linux C与C一线开发实践&#xff08;第2版&#xff09;&#xff08;Linux技术丛书&#xff09;》(朱文伟&#xff0c;李建英)【摘要 书评 试读】- 京东图书 Linu…...

行政纠错——pycorrector学习

pycorrector是一个开源中文文本纠错工具&#xff0c;它支持对中文文本进行音似、形似和语法错误的纠正。此工具是使用Python3进行开发的&#xff0c;并整合了Kenlm、ConvSeq2Seq、BERT、MacBERT、ELECTRA、ERNIE、Transformer等多种模型来实现文本纠错功能。pycorrector官方仓库…...

Go的defer原理

Go 的 defer 原理 defer 是 Go 语言中的一个关键字&#xff0c;用于延迟执行一个函数调用。它通常用于处理资源释放、连接关闭等操作&#xff0c;确保这些操作在函数返回之前执行。 1. 什么是 defer&#xff1f; defer 关键字用于延迟执行一个函数调用&#xff0c;直到包含它…...

Windows 下本地 Docker RAGFlow 部署指南

Windows 下本地 Docker RAGFlow 部署指南 环境要求部署步骤1. 克隆代码仓库2. 配置 Docker 镜像加速(可选)3. 修改端口配置(可选)4. 启动服务5. 验证服务状态6. 访问服务7. 登录系统8. 配置模型8.1 使用 Ollama 本地模型8.2 使用在线 API 服务9. 开始使用10. 常见问题处理端…...

专题三_穷举vs暴搜vs深搜vs回溯vs剪枝_全排列

dfs解决 全排列&子集 1.全排列 link:46. 全排列 - 力扣&#xff08;LeetCode&#xff09; 全局变量回溯 code class Solution { public:vector<vector<int>> ans;vector<int> cur;vector<bool> used;vector<vector<int>> permute…...

【IEEE Fellow 主讲报告| EI检索稳定】第五届机器学习与智能系统工程国际学术会议(MLISE 2025)

重要信息 会议时间地点&#xff1a;2025年6月13-15日 中国深圳 会议官网&#xff1a;http://mlise.org EI Compendex/Scopus稳定检索 会议简介 第五届机器学习与智能系统工程国际学术会议将于6月13-15日在中国深圳隆重召开。本次会议旨在搭建一个顶尖的学术交流平台&#xf…...

华为E9000刀箱服务器监控指标解读

美信监控易内置了数千种常见设备监测器&#xff0c;能够监测超过20万项指标。这些指标涵盖了从硬件设备到软件系统&#xff0c;从网络性能到安全状态等各个方面。如下基于美信监控易——IT基础监控模块&#xff0c;对华为E9000刀箱服务器部分监控指标进行解读。 一、华为E9000…...

【LC】2544. 交替数字和

题目描述&#xff1a; 给你一个正整数 n 。n 中的每一位数字都会按下述规则分配一个符号&#xff1a; 最高有效位 上的数字分配到 正 号。剩余每位上数字的符号都与其相邻数字相反。 返回所有数字及其对应符号的和。 示例 1&#xff1a; 输入&#xff1a;n 521 输出&…...

QT QTreeWidget控件 全面详解

本系列文章全面的介绍了QT中的57种控件的使用方法以及示例,包括 Button(PushButton、toolButton、radioButton、checkBox、commandLinkButton、buttonBox)、Layouts(verticalLayout、horizontalLayout、gridLayout、formLayout)、Spacers(verticalSpacer、horizontalSpacer)、…...

欧几里得算法求最小公倍数和最大公约数

一.最大公约数 gcd(a,b)gcd(b,a%b) 递归式,当且仅当b0&#xff0c;易得0和a的公约数为a.(可作为递归的出口) 证明&#xff1a; int gcd(int a, int b) {if (b 0) return a;else return gcd(b, a % b); } 二.最小公倍数 给定整数a b&#xff0c;求a b的最小公倍数 有图可知…...

Selenium配合Cookies实现网页免登录

文章目录 前言1 方案一&#xff1a;使用Chrome用户数据目录2 方案二&#xff1a;手动获取并保存Cookies&#xff0c;后续使用保存的Cookies3 注意事项 前言 在进行使用Selenium进行爬虫、网页自动化操作时&#xff0c;登录往往是一个必须解决的问题&#xff0c;但是Selenium每次…...

DeepSeek R1模型解读与使用

字节在春节前发布了doubao-1.5&#xff0c;它的官方介绍竟然是这样的&#xff1a; 这次发布了四个型号&#xff0c;doubao-1.5-pro-32k, doubao-1.5-pro-256k, doubao-1.5-lite-32k, doubao-1.5-vision-pro-32k&#xff0c;价格全部与上一个版本doubao模型一致&#xff0c;加量…...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...