使用 C++ 在深度学习中的应用:如何通过 C++20 构建高效神经网络
深度学习已经成为现代人工智能的核心技术,在图像识别、自然语言处理、语音识别等多个领域广泛应用。尽管 Python 因其简便易用和强大的深度学习框架(如 TensorFlow 和 PyTorch)而在这一领域占据主导地位,但 C++ 作为一门高性能语言,仍然在许多高效计算场景中有着不可忽视的优势。
在这篇文章中,我们将介绍如何使用 C++20 构建高效的神经网络。通过结合现代 C++ 特性,我们不仅能提升模型的计算效率,还能充分发挥 C++ 在性能优化方面的优势。
目录
1. C++ 神经网络设计基础
1.1 神经网络的基本结构
1.2 单隐层神经网络的实现
2. 使用现代 C++ 特性优化
2.1 智能指针与资源管理
2.2 并行计算加速
2.2.1 使用 std::for_each 实现并行计算
2.2.2 代码解析
2.2.3 性能提升
2.2.4 注意事项
3. 总结
1. C++ 神经网络设计基础
1.1 神经网络的基本结构
神经网络的核心结构通常包括输入层、隐藏层和输出层。每一层包含若干个神经元,数据通过前向传播(Forward Propagation)逐层传递,在每一层进行加权求和和激活函数处理,最终输出预测结果。通过反向传播(Backpropagation),我们根据预测结果与实际标签的误差来调整网络中的权重和偏置。
1.2 单隐层神经网络的实现
我们首先从最简单的单隐层神经网络开始,实现一个输入层、隐藏层和输出层的基本结构,并采用 Sigmoid 激活函数。
#include <iostream>
#include <vector>
#include <cmath>
#include <cassert>// Tensor 类:表示矩阵或张量
class Tensor {
public:Tensor(int rows, int cols) : rows_(rows), cols_(cols) {data_ = std::vector<std::vector<float>>(rows, std::vector<float>(cols, 0.0f));}float& at(int row, int col) { return data_[row][col]; }float at(int row, int col) const { return data_[row][col]; }int getRows() const { return rows_; }int getCols() const { return cols_; }void randomize() {for (int i = 0; i < rows_; ++i) {for (int j = 0; j < cols_; ++j) {data_[i][j] = (rand() % 100) / 100.0f; // 生成 0 到 1 之间的随机数}}}private:int rows_, cols_;std::vector<std::vector<float>> data_;
};// 矩阵乘法
Tensor matmul(const Tensor& A, const Tensor& B) {assert(A.getCols() == B.getRows());Tensor result(A.getRows(), B.getCols());for (int i = 0; i < A.getRows(); ++i) {for (int j = 0; j < B.getCols(); ++j) {float sum = 0.0f;for (int k = 0; k < A.getCols(); ++k) {sum += A.at(i, k) * B.at(k, j);}result.at(i, j) = sum;}}return result;
}// 激活函数:Sigmoid
float sigmoid(float x) {return 1.0f / (1.0f + exp(-x));
}// Sigmoid 的导数
float sigmoid_derivative(float x) {return x * (1.0f - x);
}// 神经网络类
class NeuralNetwork {
public:NeuralNetwork(int input_size, int hidden_size, int output_size) {weights_input_hidden = Tensor(input_size, hidden_size);weights_input_hidden.randomize();bias_hidden = Tensor(1, hidden_size);bias_hidden.randomize();weights_hidden_output = Tensor(hidden_size, output_size);weights_hidden_output.randomize();bias_output = Tensor(1, output_size);bias_output.randomize();}Tensor forward(const Tensor& input) {// 输入层到隐藏层Tensor hidden = matmul(input, weights_input_hidden);add_bias(hidden, bias_hidden);apply_sigmoid(hidden);// 隐藏层到输出层Tensor output = matmul(hidden, weights_hidden_output);add_bias(output, bias_output);apply_sigmoid(output);return output;}void backward(const Tensor& input, const Tensor& target, float learning_rate) {Tensor output = forward(input);Tensor output_error = compute_error(output, target);// 计算隐藏层误差Tensor hidden_error = matmul(output_error, transpose(weights_hidden_output));for (int i = 0; i < hidden_error.getRows(); ++i) {for (int j = 0; j < hidden_error.getCols(); ++j) {hidden_error.at(i, j) *= sigmoid_derivative(output.at(i, j));}}// 更新权重和偏置update_weights(weights_hidden_output, output_error, learning_rate);update_bias(bias_output, output_error, learning_rate);update_weights(weights_input_hidden, hidden_error, learning_rate);update_bias(bias_hidden, hidden_error, learning_rate);}private:Tensor weights_input_hidden, weights_hidden_output;Tensor bias_hidden, bias_output;// 辅助函数:应用 Sigmoid 激活函数void apply_sigmoid(Tensor& tensor) {for (int i = 0; i < tensor.getRows(); ++i) {for (int j = 0; j < tensor.getCols(); ++j) {tensor.at(i, j) = sigmoid(tensor.at(i, j));}}}// 辅助函数:添加偏置void add_bias(Tensor& tensor, const Tensor& bias) {for (int i = 0; i < tensor.getRows(); ++i) {for (int j = 0; j < tensor.getCols(); ++j) {tensor.at(i, j) += bias.at(0, j);}}}// 计算误差Tensor compute_error(const Tensor& output, const Tensor& target) {Tensor error(output.getRows(), output.getCols());for (int i = 0; i < output.getRows(); ++i) {for (int j = 0; j < output.getCols(); ++j) {error.at(i, j) = output.at(i, j) - target.at(i, j); // MSE}}return error;}// 转置矩阵Tensor transpose(const Tensor& tensor) {Tensor transposed(tensor.getCols(), tensor.getRows());for (int i = 0; i < tensor.getRows(); ++i) {for (int j = 0; j < tensor.getCols(); ++j) {transposed.at(j, i) = tensor.at(i, j);}}return transposed;}// 更新权重void update_weights(Tensor& weights, const Tensor& error, float learning_rate) {for (int i = 0; i < weights.getRows(); ++i) {for (int j = 0; j < weights.getCols(); ++j) {weights.at(i, j) -= learning_rate * error.at(i, j);}}}// 更新偏置void update_bias(Tensor& bias, const Tensor& error, float learning_rate) {for (int i = 0; i < bias.getCols(); ++i) {bias.at(0, i) -= learning_rate * error.at(0, i);}}
};int main() {NeuralNetwork nn(2, 3, 1); // 输入层2个节点,隐藏层3个节点,输出层1个节点// 训练数据:XOR 问题Tensor inputs(4, 2);inputs.at(0, 0) = 0.0f; inputs.at(0, 1) = 0.0f;inputs.at(1, 0) = 0.0f; inputs.at(1, 1) = 1.0f;inputs.at(2, 0) = 1.0f; inputs.at(2, 1) = 0.0f;inputs.at(3, 0) = 1.0f; inputs.at(3, 1) = 1.0f;Tensor targets(4, 1);targets.at(0, 0) = 0.0f;targets.at(1, 0) = 1.0f;targets.at(2, 0) = 1.0f;targets.at(3, 0) = 0.0f;// 训练神经网络并打印误差for (int epoch = 0; epoch < 10000; ++epoch) {nn.backward(inputs, targets, 0.1f);if (epoch % 1000 == 0) {Tensor result = nn.forward(inputs);float error = 0.0f;for (int i = 0; i < result.getRows(); ++i) {error += fabs(result.at(i, 0) - targets.at(i, 0));}std::cout << "Epoch " << epoch << " - Error: " << error << std::endl;}}// 测试结果std::cout << "\nPredictions after training:" << std::endl;Tensor result = nn.forward(inputs);for (int i = 0; i < result.getRows(); ++i) {std::cout << "Input: (" << inputs.at(i, 0) << ", " << inputs.at(i, 1) << ") -> Predicted Output: "<< result.at(i, 0) << " (Expected: " << targets.at(i, 0) << ")" << std::endl;}return 0;
}
2. 使用现代 C++ 特性优化
2.1 智能指针与资源管理
C++ 引入了智能指针(如 std::unique_ptr
和 std::shared_ptr
),这些智能指针能够自动管理内存,减少内存泄漏的风险。在深度学习框架中,动态分配的内存管理至关重要,使用智能指针可以提升代码的安全性和可维护性。
#include <memory>class NeuralNetwork {
public:NeuralNetwork() {layers.push_back(std::make_unique<SigmoidLayer>(2, 3));layers.push_back(std::make_unique<SigmoidLayer>(3, 1));}Tensor forward(const Tensor& input) {Tensor output = input;for (const auto& layer : layers) {output = layer->forward(output);}return output;}void backward(const Tensor& input, const Tensor& target) {Tensor output = forward(input);Tensor error = output;for (int i = layers.size() - 1; i >= 0; --i) {layers[i]->backward(input, error);error = layers[i]->error;}}private:std::vector<std::unique_ptr<Layer>> layers;
};
2.2 并行计算加速
在大规模神经网络训练和推理中,矩阵乘法是计算瓶颈之一。C++20 引入了 std::execution
标准库,提供了便捷的并行计算支持,使得我们能够通过并行化矩阵计算来加速深度学习模型的训练。通过将计算任务分配给多个处理器核心,可以显著提升计算速度,尤其是当数据量非常庞大的时候。
std::execution::par
是 C++20 并行算法的一部分,可以通过它使得某些算法(例如 std::for_each
)并行执行,从而提高性能。通过这一特性,我们可以轻松地将矩阵乘法的计算并行化,实现显著的加速。
2.2.1 使用 std::for_each
实现并行计算
std::for_each
是一个算法,用于对指定范围的每个元素执行操作。在 C++20 中,我们可以指定 std::execution::par
来告知编译器我们希望对该范围内的元素进行并行处理。
为了实现并行矩阵乘法,我们将 std::for_each
应用于矩阵 result
的每个元素,在计算每个元素时,我们将其对应的行和列进行点积操作,从而计算出矩阵乘法的结果。
下面是一个细化的并行矩阵乘法实现:
#include <execution>
#include <vector>
#include <iostream>class Tensor {
public:Tensor(int rows, int cols) : rows_(rows), cols_(cols) {data_ = std::vector<std::vector<float>>(rows, std::vector<float>(cols, 0.0f));}float& at(int row, int col) { return data_[row][col]; }float at(int row, int col) const { return data_[row][col]; }int getRows() const { return rows_; }int getCols() const { return cols_; }auto begin() { return data_.begin(); }auto end() { return data_.end(); }private:int rows_, cols_;std::vector<std::vector<float>> data_;
};// 并行矩阵乘法函数
void parallel_matrix_multiplication(const Tensor& A, const Tensor& B, Tensor& result) {int rowsA = A.getRows();int colsA = A.getCols();int rowsB = B.getRows();int colsB = B.getCols();if (colsA != rowsB) {std::cerr << "Matrix dimensions do not match for multiplication!" << std::endl;return;}// 使用并行执行计算每个结果元素std::for_each(std::execution::par, result.begin(), result.end(), [&](auto& element) {int row = &element - &result.at(0, 0); // 当前元素所在的行int col = &element - &result.at(0, 0); // 当前元素所在的列// 计算 A 行与 B 列的点积float sum = 0.0f;for (int k = 0; k < colsA; ++k) {sum += A.at(row, k) * B.at(k, col);}result.at(row, col) = sum;});
}int main() {Tensor A(2, 3); // A 为 2x3 矩阵Tensor B(3, 2); // B 为 3x2 矩阵Tensor C(2, 2); // 结果矩阵 C 为 2x2 矩阵// 初始化矩阵 A 和 BA.at(0, 0) = 1.0f; A.at(0, 1) = 2.0f; A.at(0, 2) = 3.0f;A.at(1, 0) = 4.0f; A.at(1, 1) = 5.0f; A.at(1, 2) = 6.0f;B.at(0, 0) = 7.0f; B.at(0, 1) = 8.0f;B.at(1, 0) = 9.0f; B.at(1, 1) = 10.0f;B.at(2, 0) = 11.0f; B.at(2, 1) = 12.0f;// 执行并行矩阵乘法parallel_matrix_multiplication(A, B, C);// 打印结果矩阵std::cout << "Matrix C (Result of A * B):" << std::endl;for (int i = 0; i < C.getRows(); ++i) {for (int j = 0; j < C.getCols(); ++j) {std::cout << C.at(i, j) << " ";}std::cout << std::endl;}return 0;
}
2.2.2 代码解析
- 矩阵表示:我们使用
Tensor
类来表示矩阵。矩阵是一个二维数组,我们为每个矩阵元素提供了at()
方法来访问其值。 - 并行化矩阵计算:在
parallel_matrix_multiplication
函数中,我们使用了std::for_each(std::execution::par, ...)
来并行计算result
矩阵的每个元素。对于每个元素,我们计算其对应的行和列的点积,并将结果存储到result
矩阵中。 - 元素定位:通过
&element - &result.at(0, 0)
,我们找到了当前元素的行和列索引。这样每个线程都能够独立处理一个矩阵元素,而不会产生数据竞争。 - 矩阵维度检查:在进行矩阵乘法之前,我们检查了矩阵的维度是否符合乘法要求(即
A
的列数等于B
的行数)。
2.2.3 性能提升
使用 std::execution::par
可以让我们充分利用现代 CPU 的多核架构。在多核处理器上,每个矩阵元素的计算任务都被分配到不同的线程上,从而加速了矩阵乘法的计算。当矩阵的规模很大时,这种并行化带来的加速效果更加明显。
2.2.4 注意事项
- 线程安全:由于每个线程处理矩阵中的不同元素,因此不会发生数据竞争,保证了线程安全。
- 负载均衡:并行算法的效果依赖于负载的均衡。在大规模矩阵计算中,
std::for_each
会根据 CPU 核心的数量自动分配任务,从而提升计算效率。
3. 总结
本文通过 C++20 展示了如何从头开始构建一个高效的神经网络,并结合现代 C++ 特性进行优化。在深度学习应用中,C++ 能够提供更高的性能和灵活性,尤其适用于对计算效率要求较高的场景。通过适当使用智能指针、并行计算等技术,我们能够在 C++ 中实现高效的深度学习框架,充分发挥其性能优势。
希望本文能为你提供一个了解如何在 C++ 中实现神经网络的起点,并为你在构建高效深度学习模型的过程中提供有益的帮助。
相关文章:

使用 C++ 在深度学习中的应用:如何通过 C++20 构建高效神经网络
深度学习已经成为现代人工智能的核心技术,在图像识别、自然语言处理、语音识别等多个领域广泛应用。尽管 Python 因其简便易用和强大的深度学习框架(如 TensorFlow 和 PyTorch)而在这一领域占据主导地位,但 C 作为一门高性能语言&…...

当 Facebook 窥探隐私:用户的数字权利如何捍卫?
随着社交平台的普及,Facebook 已经成为全球用户日常生活的一部分。然而,伴随而来的隐私问题也愈发严峻。近年来,Facebook 频频被曝出泄露用户数据、滥用个人信息等事件,令公众对其隐私保护措施产生质疑。在这个信息化时代…...

Spring MVC中HandlerInterceptor和Filter的区别
目录 一、处理阶段 二、功能范围 三、参数访问 四、配置方式 五、使用场景说明 在Spring MVC中,HandlerInterceptor和Filter都是用于拦截请求的重要组件,但它们在多个方面存在显著的差异。本文将详细解析这两种拦截机制的区别,并结合使用…...

Android多语言开发自动化生成工具
在做 Android 开发的过程中,经常会遇到多语言开发的场景,尤其在车载项目中,多语言开发更为常见。对应多语言开发,通常都是在中文版本的基础上开发其他国家语言,这里我们会拿到中-外语言对照表,这里的工作难…...

回首2024,展望2025
2024年,是个充满挑战与惊喜的年份。在这366个日夜里,我站在编程与博客的交汇点,穿越了无数的风景与挑战,也迎来了自我成长的丰收时刻。作为开发者的第十年,我依然步伐坚定,心中始终带着对知识的渴望与对自我…...

Android SystemUI——快捷面板的显示(十五)
上一篇文章我们分析了 QSTileHost 初始化以及快捷设置面板的创建流程,这里我们继续来看一下快捷设置面板显示流程。 一、QS显示 对于界面的显示,我们同样从 Fragment 的 onViewCreated() 方法开始分析。 1、QSFragment 源码位置:/frameworks/base/packages/SystemUI/src/…...

放弃使用Dockerfiles 平替 docker init
您是那种觉得编写 Dockerfile 和 docker-compose.yml 文件很痛苦的人之一吗? 我承认,我就是其中之一。 我总是想知道我是否遵循了 Dockerfile、 docker-compose 文件的最佳编写实践,我害怕在不知不觉中引入了安全漏洞。 但是现在,…...

前端jquery 实现文本框输入出现自动补全提示功能
git仓库:web_study/some-demos/inputAutoFit at main Cong0925/web_study (github.com) 压缩包:已绑定到指定资源 示例图: 实现说明: 1.首先,html部分设置好相关的定位标签如图: 2.主要函数 3.默认数据...

vulfocus/fastjson-cnvd_2017_02833复现
漏洞概述 Fastjson 是阿里巴巴开发的一个高性能的 Java 库,用于将 Java 对象转换成 JSON 格式(序列化),以及将 JSON 字符串转换回 Java 对象(反序列化)。 fastjson在解析json的过程中,支持使用type字段来指…...

华为支付接入规范
为了确保用户获得良好的支付体验,Payment Kit制定了相关接入设计规范,请开发者遵照执行,具体要求(非强制性)如下: 一、支付方式呈现 涉及支付公司名称,请统一使用:花瓣支付ÿ…...

MySQL训练营-慢查询诊断问题
慢查询相关参数和建议配置 slow_query_log long_query_time 日志开关,是否记慢查询日志以及超过多长时间判定为慢查询。 查看参数设置: SHOW VARIABLES LIKE ‘slow_query_log’;SHOW VARIABLES LIKE ‘long_query_time’; 实践建议: …...

如何给自己的域名配置免费的HTTPS How to configure free HTTPS for your domain name
今天有小伙伴给我发私信,你的 https 到期啦 并且随手丢给我一个截图。 还真到期了。 javapub.net.cn 这个网站作为一个用爱发电的编程学习网站,用来存编程知识和面试题等,平时我都用业余时间来维护,并且还自费买了服务器和阿里云…...

.Net Core微服务入门全纪录(六)——EventBus-事件总线
系列文章目录 1、.Net Core微服务入门系列(一)——项目搭建 2、.Net Core微服务入门全纪录(二)——Consul-服务注册与发现(上) 3、.Net Core微服务入门全纪录(三)——Consul-服务注…...

1/20赛后总结
1/20赛后总结 T1『讨论区管理员』的旅行 - BBC编程训练营 算法:IDA* 分数:0 damn it! Ac_code走丢了~~(主要是没有写出来)~~ T2华强买瓜 - BBC编程训练营 算法:双向DFS或者DFS剪枝 分数:0 Ac_code…...

PVE 虚拟机安装 Debian 无图形化界面服务器
Debian 安装 Debian 镜像下载 找一个Debian镜像服务器,根据需要的版本和自己硬件选择。 iso-cd/:较小,仅包含安装所需的基础组件,可能需要网络访问来完成安装。有镜像 debian-12.9.0-amd64-netinst.isoiso-dvd/:较…...

第17篇:python进阶:详解数据分析与处理
第17篇:数据分析与处理 内容简介 本篇文章将深入探讨数据分析与处理在Python中的应用。您将学习如何使用pandas库进行数据清洗与分析,掌握matplotlib和seaborn库进行数据可视化,以及处理大型数据集的技巧。通过丰富的代码示例和实战案例&am…...

三天急速通关Java基础知识:Day1 基本语法
三天急速通关JAVA基础知识:Day1 基本语法 0 文章说明1 关键字 Keywords2 注释 Comments2.1 单行注释2.2 多行注释2.3 文档注释 3 数据类型 Data Types3.1 基本数据类型3.2 引用数据类型 4 变量与常量 Variables and Constant5 运算符 Operators6 字符串 String7 输入…...

Python的进程和线程
ref 接受几个设定: 进程是一家almost密不透风的公司,缅甸KK园区 线程里面工作的…人 进程**[园区]**内公共资源对于进程来说,可以共享. 别的园区[进程],一般不能和自己的园区共享人员资源,除非… 好的,现在再接受设定: 单个CPU在任一时刻只能执行单个线程,只有…...

【Mysql】记录锁、间隙锁和临键锁的区别
InnoDB通过MVCCNext-Key Locks,解决了可重复读的事务隔离级别出现的幻读问题。 记录锁 记录锁就是为某行数据进行加锁,它封锁该行的索引记录 SELECT * FROM table WHERE id 1 FOR UPDATE id为1的记录行会被锁住。需要注意的的:id列必须为…...

神经网络|(二)sigmoid神经元函数
【1】引言 在前序学习进程中,我们已经了解了基本的二元分类器和神经元的构成,文章学习链接为: 神经网络|(一)加权平均法,感知机和神经元-CSDN博客 在此基础上,我们认识到神经元本身在做二元分类,是一种非…...

w-form-select.vue(自定义下拉框组件)(与后端字段直接相关性)
文章目录 1、w-form-select.vue 组件中每个属性的含义2、实例3、源代码 1、w-form-select.vue 组件中每个属性的含义 好的,我们来详细解释 w-form-select.vue 组件中每个属性的含义,并用表格列出它们是否与后端字段直接相关: 属性解释表格&…...

【JVM】垃圾收集器详解
你将学到 1. Serial 收集器 2. ParNew 收集器 3. Parallel Scavenge 收集器 4. Serial Old 收集器 5. Parallel Old 收集器 6. CMS 收集器 7. G1 收集器 在 Java 中,垃圾回收(GC)是自动管理内存的一个重要机制。HotSpot JVM 提供了多种…...

python创建一个httpServer网页上传文件到httpServer
一、代码 1.server.py import os from http.server import SimpleHTTPRequestHandler, HTTPServer import cgi # 自定义请求处理类 class MyRequestHandler(SimpleHTTPRequestHandler):# 处理GET请求def do_GET(self):if self.path /:# 响应200状态码self.send_response(2…...

【Maui】提示消息的扩展
文章目录 前言一、问题描述二、解决方案三、软件开发(源码)3.1 消息扩展库3.2 消息提示框使用3.3 错误消息提示使用3.4 问题选择框使用 四、项目展示 前言 .NET 多平台应用 UI (.NET MAUI) 是一个跨平台框架,用于使用 C# 和 XAML 创建本机移…...

租车骑绿岛
租车骑绿岛 真题目录: 点击去查看 E 卷 100分题型 题目描述 部门组织绿岛骑行团建活动。租用公共双人自行车,每辆自行车最多坐两人,最大载重M。给出部门每个人的体重,请问最多需要租用多少双人自行车。 输入描述 第一行两个数字m、n&…...

Pytorch - YOLOv11自定义资料训练
►前言 本篇将讲解目前最新推出的YOLOv11搭配Roboflow进行自定义资料标注训练流程,透过Colab上进行实作说明,使大家能够容易的了解YOLOv11的使用。 ►YOLO框架下载与导入 ►Roboflow的资料收集与标注 进行自定义资料集建置与上传 透过Roboflow工具进行…...

微服务与docker
准备工作 在课前资料中给大家提供了黑马商城项目的资料,我们需要先导入这个单体项目。不过需要注意的是,本篇及后续的微服务学习都是基于Centos7系统下的Docker部署,因此你必须做好一些准备: Centos7的环境及一个好用的SSH客户端装好Docker会使用Docker如果是学习过上面Doc…...

1.23 消息队列
使用消息队列,实现两个终端相互聊天 程序代码: w1.c #include <stdio.h> #include <string.h> #include <unistd.h> #include <stdlib.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h&g…...

【华为路由的arp配置】
华为路由的arp配置 ARP:IP地址与MAC地址的映射。 R1: g0/0/0:10.1.1.254/24 g0/0/1:10.1.2.254/24 PC1: 10.1.1.1/16 PC2: 10.1.1.2/16 PC3: 10.1.2.3/16 动态ARP 查看PC1的arp表,可以看到,列表为空。 查看R1的arp表 在PC3上ping命令测…...

绘制决策树的尝试1
代码复制 import pydotplus 复制 - 这一行代码用于导入pydotplus模块,这是一个用来在Python中创建图形的工具。2. python from IPython.display import Image 这一行代码用于从IPython显示模块中导入Image类,它允许我们在Jupyter笔记本中显示图像。…...