深度学习项目--基于LSTM的糖尿病预测探究(pytorch实现)
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
前言
-
LSTM模型一直是一个很经典的模型,一般用于序列数据预测,这个可以很好的挖掘数据上下文信息,本文将使用LSTM进行糖尿病预测(二分类问题),采用LSTM+Linear解决分类问题;
-
📖 糖尿病预测之前我用随机森林做过:机器学习/数据分析案例—糖尿病预测;
-
👀 后面打算用机器学习(随机森林、SVM等)结合深度学习LSTM做一个比较完整的项目,大家可以关注一下哈;
-
LSTM讲解: 深度学习基础–LSTM学习笔记(李沐《动手学习深度学习》)
-
欢迎收藏 + 关注,本人将会持续更新
文章目录
- 1、数据导入和数据预处理
- 1、数据导入
- 2、数据统计
- 3、数据分布分析
- 4、相关性分析
- 2、数据标准化和划分
- 3、创建模型
- 4、模型训练
- 1、创建训练集
- 2、创建测试集函数
- 3、设置超参数
- 5、模型训练
- 6、模型结果展示
- 7、预测
1、数据导入和数据预处理
1、数据导入
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, TensorDataset
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
#设置字体
from pylab import mpl
mpl.rcParams["font.sans-serif"] = ["SimHei"] # 显示中文
plt.rcParams['axes.unicode_minus'] = False # 显示负号# 数据不大,用CPU即可
device = 'cpu'data_df = pd.read_excel('./dia.xls')data_df.head()
卡号 | 性别 | 年龄 | 高密度脂蛋白胆固醇 | 低密度脂蛋白胆固醇 | 极低密度脂蛋白胆固醇 | 甘油三酯 | 总胆固醇 | 脉搏 | 舒张压 | 高血压史 | 尿素氮 | 尿酸 | 肌酐 | 体重检查结果 | 是否糖尿病 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 18054421 | 0 | 38 | 1.25 | 2.99 | 1.07 | 0.64 | 5.31 | 83 | 83 | 0 | 4.99 | 243.3 | 50 | 1 | 0 |
1 | 18054422 | 0 | 31 | 1.15 | 1.99 | 0.84 | 0.50 | 3.98 | 85 | 63 | 0 | 4.72 | 391.0 | 47 | 1 | 0 |
2 | 18054423 | 0 | 27 | 1.29 | 2.21 | 0.69 | 0.60 | 4.19 | 73 | 61 | 0 | 5.87 | 325.7 | 51 | 1 | 0 |
3 | 18054424 | 0 | 33 | 0.93 | 2.01 | 0.66 | 0.84 | 3.60 | 83 | 60 | 0 | 2.40 | 203.2 | 40 | 2 | 0 |
4 | 18054425 | 0 | 36 | 1.17 | 2.83 | 0.83 | 0.73 | 4.83 | 85 | 67 | 0 | 4.09 | 236.8 | 43 | 0 | 0 |
2、数据统计
data_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1006 entries, 0 to 1005
Data columns (total 16 columns):# Column Non-Null Count Dtype
--- ------ -------------- ----- 0 卡号 1006 non-null int64 1 性别 1006 non-null int64 2 年龄 1006 non-null int64 3 高密度脂蛋白胆固醇 1006 non-null float644 低密度脂蛋白胆固醇 1006 non-null float645 极低密度脂蛋白胆固醇 1006 non-null float646 甘油三酯 1006 non-null float647 总胆固醇 1006 non-null float648 脉搏 1006 non-null int64 9 舒张压 1006 non-null int64 10 高血压史 1006 non-null int64 11 尿素氮 1006 non-null float6412 尿酸 1006 non-null float6413 肌酐 1006 non-null int64 14 体重检查结果 1006 non-null int64 15 是否糖尿病 1006 non-null int64
dtypes: float64(7), int64(9)
memory usage: 125.9 KB
data_df.describe()
卡号 | 性别 | 年龄 | 高密度脂蛋白胆固醇 | 低密度脂蛋白胆固醇 | 极低密度脂蛋白胆固醇 | 甘油三酯 | 总胆固醇 | 脉搏 | 舒张压 | 高血压史 | 尿素氮 | 尿酸 | 肌酐 | 体重检查结果 | 是否糖尿病 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 1.006000e+03 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 | 1006.000000 |
mean | 1.838279e+07 | 0.598410 | 50.288270 | 1.152201 | 2.707475 | 0.998311 | 1.896720 | 4.857624 | 80.819085 | 76.886680 | 0.173956 | 5.562684 | 339.345427 | 64.106362 | 1.609344 | 0.444334 |
std | 6.745088e+05 | 0.490464 | 16.921487 | 0.313426 | 0.848070 | 0.715891 | 2.421403 | 1.029973 | 12.542270 | 12.763173 | 0.379260 | 1.646342 | 84.569846 | 29.338437 | 0.772327 | 0.497139 |
min | 1.805442e+07 | 0.000000 | 20.000000 | 0.420000 | 0.840000 | 0.140000 | 0.350000 | 2.410000 | 41.000000 | 45.000000 | 0.000000 | 2.210000 | 140.800000 | 30.000000 | 0.000000 | 0.000000 |
25% | 1.807007e+07 | 0.000000 | 37.250000 | 0.920000 | 2.100000 | 0.680000 | 0.880000 | 4.200000 | 72.000000 | 67.000000 | 0.000000 | 4.450000 | 280.850000 | 51.250000 | 1.000000 | 0.000000 |
50% | 1.807036e+07 | 1.000000 | 50.000000 | 1.120000 | 2.680000 | 0.850000 | 1.335000 | 4.785000 | 79.000000 | 76.000000 | 0.000000 | 5.340000 | 333.000000 | 62.000000 | 2.000000 | 0.000000 |
75% | 1.809726e+07 | 1.000000 | 60.000000 | 1.320000 | 3.220000 | 1.090000 | 2.087500 | 5.380000 | 88.000000 | 85.000000 | 0.000000 | 6.367500 | 394.000000 | 72.000000 | 2.000000 | 1.000000 |
max | 2.026124e+07 | 1.000000 | 93.000000 | 2.500000 | 7.980000 | 11.260000 | 45.840000 | 12.610000 | 135.000000 | 119.000000 | 1.000000 | 18.640000 | 679.000000 | 799.000000 | 3.000000 | 1.000000 |
3、数据分布分析
# 缺失值统计
data_df.isnull().sum()
卡号 0
性别 0
年龄 0
高密度脂蛋白胆固醇 0
低密度脂蛋白胆固醇 0
极低密度脂蛋白胆固醇 0
甘油三酯 0
总胆固醇 0
脉搏 0
舒张压 0
高血压史 0
尿素氮 0
尿酸 0
肌酐 0
体重检查结果 0
是否糖尿病 0
dtype: int64
# 数据分布、异常值分析
feature_name = {'性别': '性别','年龄': '年龄','高密度脂蛋白胆固醇': '高密度脂蛋白胆固醇','低密度脂蛋白胆固醇': '低密度脂蛋白胆固醇','极低密度脂蛋白胆固醇': '极低密度脂蛋白胆固醇','甘油三酯': '甘油三酯','总胆固醇': '总胆固醇','脉搏': '脉搏','舒张压': '舒张压','高血压史': '高血压史','尿素氮': '尿素氮','肌酐': '肌酐','体重检查结果': '体重检查结果','是否糖尿病': '是否糖尿病'
}# 子箱图 展示
plt.figure(figsize=(20, 20))for i, (col, col_name) in enumerate(feature_name.items(), 1):plt.subplot(4, 4, i)# 绘制子箱图sns.boxplot(x=data_df["是否糖尿病"],y=data_df[col])# 设置标题plt.title(f'{col_name}的纸箱图', fontsize=10)plt.ylabel('数值', fontsize=12)plt.grid(axis='y', linestyle='--', alpha=0.7)plt.show()
异常值分析(查阅资料后发现):
- 总数据较少;
- 特征参数受很多因素的影响,故这里假设没有异常值(数据多的时候可以进一步分析)
患糖尿病和不患糖尿病数据分布分析:
- 发现患病和不患病在:年龄、高密度蛋白固醇、低密度蛋白固醇、低密度蛋白固醇、甘油三肪、舒张压、高血压、尿素的相关因素等数据因素有关
4、相关性分析
plt.figure(figsize=(15, 10))
sns.heatmap(data_df.corr(), annot=True, fmt=".2f")
plt.show()
高密度蛋白胆固醇存在负相关,故删除该特征
2、数据标准化和划分
时间步长为1
# 特征选择
x = data_df.drop(['卡号', '高密度脂蛋白胆固醇', '是否糖尿病'], axis=1)
y = data_df['是否糖尿病']# 数据标准化(数据之间差别大), 二分类问题,y不需要做标准化
sc = StandardScaler()
x = sc.fit_transform(x)# 转换为tensors数据
x = torch.tensor(np.array(x), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.int64)# 数据划分, 训练:测试 = 8: 2
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2 ,random_state=42)# 维度设置, [batch_size, seq, features], 当然不设置也没事,因为这样默认** 设置 seq 为 1**
x_train = x_train.unsqueeze(1)
x_test = x_test.unsqueeze(1)# 查看维度
x_train.shape, y_train.shape
(torch.Size([804, 1, 13]), torch.Size([804]))
# 构建数据集
batch_size = 16train_dl = DataLoader(TensorDataset(x_train, y_train),batch_size=batch_size,shuffle=True)test_dl = DataLoader(TensorDataset(x_test, y_test),batch_size=batch_size,shuffle=False)
for X, Y in train_dl:print(X.shape)print(Y.shape)break
torch.Size([16, 1, 13])
torch.Size([16])
3、创建模型
class Model_lstm(nn.Module):def __init__(self):super().__init__()'''模型结构:1、两层lstm2、一层linear '''self.lstm1 = nn.LSTM(input_size=13, hidden_size=200,num_layers=1, batch_first=True)self.lstm2 = nn.LSTM(input_size=200, hidden_size=200,num_layers=1, batch_first=True)# 展开,分类self.lc1 = nn.Linear(200, 2)def forward(self, x):out, hidden1 = self.lstm1(x)out, _ = self.lstm2(out, hidden1) # 将上一个层的最后隐藏层状态,作为lstm2的这一层的隐藏层状态out = self.lc1(out)return outmodel = Model_lstm().to(device)model
Model_lstm((lstm1): LSTM(13, 200, batch_first=True)(lstm2): LSTM(200, 200, batch_first=True)(lc1): Linear(in_features=200, out_features=2, bias=True)
)
model(torch.randn(8, 1, 13)).shape
torch.Size([8, 1, 2])
4、模型训练
1、创建训练集
def train(dataloader, model, loss_fn, opt):size = len(dataloader.dataset)num_batch = len(dataloader)train_acc, train_loss = 0.0, 0.0 for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X).view(-1, 2)loss = loss_fn(pred, y)# 梯度设置opt.zero_grad()loss.backward()opt.step()train_loss += loss.item()# 求最大概率配对train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()train_acc /= size train_loss /= num_batchreturn train_acc, train_loss
2、创建测试集函数
def test(dataloader, model, loss_fn):size = len(dataloader.dataset)num_batch = len(dataloader)test_acc, test_loss = 0.0, 0.0 with torch.no_grad():for X, y in dataloader:X, y = X.to(device), y.to(device)pred = model(X).view(-1, 2)loss = loss_fn(pred, y)test_loss += loss.item()# 求最大概率配对test_acc += (pred.argmax(1) == y).type(torch.float).sum().item()test_acc /= size test_loss /= num_batch return test_acc, test_loss
3、设置超参数
learn_rate = 1e-4
opt = torch.optim.Adam(model.parameters(), lr=learn_rate)
loss_fn = nn.CrossEntropyLoss()
5、模型训练
epochs = 50train_acc, train_loss, test_acc, test_loss = [], [], [], []for i in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 输出template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}')print(template.format(i + 1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))print("---------------Done---------------")
Epoch: 1, Train_acc:58.5%, Train_loss:0.677, Test_acc:75.7%, Test_loss:0.655
Epoch: 2, Train_acc:71.0%, Train_loss:0.643, Test_acc:77.2%, Test_loss:0.606
Epoch: 3, Train_acc:75.2%, Train_loss:0.590, Test_acc:79.7%, Test_loss:0.533
Epoch: 4, Train_acc:76.9%, Train_loss:0.524, Test_acc:80.2%, Test_loss:0.469
Epoch: 5, Train_acc:77.5%, Train_loss:0.481, Test_acc:79.7%, Test_loss:0.436
Epoch: 6, Train_acc:78.4%, Train_loss:0.470, Test_acc:79.7%, Test_loss:0.419
Epoch: 7, Train_acc:78.6%, Train_loss:0.452, Test_acc:80.7%, Test_loss:0.412
Epoch: 8, Train_acc:78.5%, Train_loss:0.449, Test_acc:80.7%, Test_loss:0.406
Epoch: 9, Train_acc:78.7%, Train_loss:0.444, Test_acc:80.7%, Test_loss:0.400
Epoch:10, Train_acc:79.0%, Train_loss:0.435, Test_acc:81.2%, Test_loss:0.395
Epoch:11, Train_acc:78.4%, Train_loss:0.428, Test_acc:81.2%, Test_loss:0.391
Epoch:12, Train_acc:79.1%, Train_loss:0.428, Test_acc:81.2%, Test_loss:0.388
Epoch:13, Train_acc:79.0%, Train_loss:0.421, Test_acc:80.7%, Test_loss:0.385
Epoch:14, Train_acc:79.2%, Train_loss:0.415, Test_acc:81.7%, Test_loss:0.382
Epoch:15, Train_acc:79.1%, Train_loss:0.415, Test_acc:81.7%, Test_loss:0.379
Epoch:16, Train_acc:79.7%, Train_loss:0.422, Test_acc:81.7%, Test_loss:0.377
Epoch:17, Train_acc:79.5%, Train_loss:0.410, Test_acc:81.7%, Test_loss:0.375
Epoch:18, Train_acc:79.2%, Train_loss:0.406, Test_acc:81.7%, Test_loss:0.374
Epoch:19, Train_acc:80.3%, Train_loss:0.407, Test_acc:82.2%, Test_loss:0.372
Epoch:20, Train_acc:80.1%, Train_loss:0.409, Test_acc:81.2%, Test_loss:0.370
Epoch:21, Train_acc:80.2%, Train_loss:0.397, Test_acc:80.7%, Test_loss:0.368
Epoch:22, Train_acc:81.0%, Train_loss:0.399, Test_acc:81.7%, Test_loss:0.367
Epoch:23, Train_acc:80.7%, Train_loss:0.396, Test_acc:81.2%, Test_loss:0.365
Epoch:24, Train_acc:81.0%, Train_loss:0.401, Test_acc:81.7%, Test_loss:0.363
Epoch:25, Train_acc:81.1%, Train_loss:0.392, Test_acc:82.2%, Test_loss:0.363
Epoch:26, Train_acc:81.2%, Train_loss:0.385, Test_acc:82.2%, Test_loss:0.362
Epoch:27, Train_acc:80.6%, Train_loss:0.392, Test_acc:82.2%, Test_loss:0.361
Epoch:28, Train_acc:80.5%, Train_loss:0.382, Test_acc:81.2%, Test_loss:0.358
Epoch:29, Train_acc:81.1%, Train_loss:0.386, Test_acc:81.7%, Test_loss:0.358
Epoch:30, Train_acc:80.7%, Train_loss:0.380, Test_acc:82.2%, Test_loss:0.358
Epoch:31, Train_acc:81.5%, Train_loss:0.378, Test_acc:81.7%, Test_loss:0.357
Epoch:32, Train_acc:80.6%, Train_loss:0.373, Test_acc:81.2%, Test_loss:0.356
Epoch:33, Train_acc:81.3%, Train_loss:0.373, Test_acc:81.7%, Test_loss:0.357
Epoch:34, Train_acc:80.8%, Train_loss:0.378, Test_acc:81.7%, Test_loss:0.354
Epoch:35, Train_acc:81.5%, Train_loss:0.372, Test_acc:81.2%, Test_loss:0.355
Epoch:36, Train_acc:81.5%, Train_loss:0.368, Test_acc:81.2%, Test_loss:0.354
Epoch:37, Train_acc:81.2%, Train_loss:0.368, Test_acc:80.7%, Test_loss:0.354
Epoch:38, Train_acc:81.2%, Train_loss:0.369, Test_acc:81.2%, Test_loss:0.353
Epoch:39, Train_acc:81.7%, Train_loss:0.365, Test_acc:81.2%, Test_loss:0.354
Epoch:40, Train_acc:81.5%, Train_loss:0.363, Test_acc:81.2%, Test_loss:0.355
Epoch:41, Train_acc:81.7%, Train_loss:0.358, Test_acc:81.2%, Test_loss:0.354
Epoch:42, Train_acc:81.7%, Train_loss:0.355, Test_acc:81.2%, Test_loss:0.353
Epoch:43, Train_acc:81.3%, Train_loss:0.353, Test_acc:80.7%, Test_loss:0.354
Epoch:44, Train_acc:82.0%, Train_loss:0.355, Test_acc:80.7%, Test_loss:0.354
Epoch:45, Train_acc:81.7%, Train_loss:0.353, Test_acc:79.7%, Test_loss:0.354
Epoch:46, Train_acc:82.1%, Train_loss:0.354, Test_acc:80.2%, Test_loss:0.354
Epoch:47, Train_acc:82.0%, Train_loss:0.349, Test_acc:80.2%, Test_loss:0.356
Epoch:48, Train_acc:82.1%, Train_loss:0.350, Test_acc:80.2%, Test_loss:0.356
Epoch:49, Train_acc:82.0%, Train_loss:0.345, Test_acc:80.7%, Test_loss:0.355
Epoch:50, Train_acc:81.8%, Train_loss:0.344, Test_acc:80.7%, Test_loss:0.355
---------------Done---------------
6、模型结果展示
from datetime import datetime
current_time = datetime.now()epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training Accuracy')
plt.xlabel(current_time) plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training Loss')
plt.show()
7、预测
test_x = x_test[0].reshape(1, 1, 13)pred = model(test_x.to(device)).reshape(-1, 2)
res = pred.argmax(1).item()print(f"预测结果: {res}, (1: 患病; 0: 不患病)")
预测结果: 1, (1: 患病; 0: 不患病)
相关文章:

深度学习项目--基于LSTM的糖尿病预测探究(pytorch实现)
🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 前言 LSTM模型一直是一个很经典的模型,一般用于序列数据预测,这个可以很好的挖掘数据上下文信息,本文将使用LSTM进行糖尿病…...
Next.js 实战 (十):中间件的魅力,打造更快更安全的应用
什么是中间件? 在 Next.js 中,中间件(Middleware)是一种用于处理每个传入请求的功能。它允许你在请求到达页面之前对其进行修改或响应。 通过中间件,你可以实现诸如日志记录、身份验证、重定向、CORS配置、压缩等任务…...
python+playwright自动化测试(四):元素操作(键盘鼠标事件)、文件上传
目录 鼠标事件 悬停 移动 按键 点击 滚轮操作 拖拽 键盘事件 输入文本内容 type输入内容 fill输入内容 按键操作press 文件上传 下拉选/单选框/复选框 滚动条操作 鼠标事件 悬停 page.get_by_text(设置,exactTrue).nth(1).hover() 移动 page.mouse.move(x33…...

【论文+源码】Diffusion-LM 改进了可控文本生成
这篇论文探讨了如何在不重新训练的情况下控制语言模型(LM)的行为,这是自然语言生成中的一个重大开放问题。尽管近期一些研究在控制简单句子属性(如情感)方面取得了成功,但在复杂的细粒度控制(如…...

双目立体校正和Q矩阵
立体校正 对两个摄像机的图像平面重投影,使二者位于同一平面,而且左右图像的行对准。 Bouguet 该算法需要用到双目标定后外参(R,T) 从上图中可以看出,该算法主要分为两步: 使成像平面共面 这个办法很直观ÿ…...
vscode 自用插件
vscode按住ctrl鼠标左键无法跟踪跳转方法名,装这些插件就可以 vscode-elm-jump:常规的代码跳转定义 Vue CSS Peek:跳转css定义 vue-helper:变量函数只跳转定义 Vetur 代码提示 Baidu Comate 自动帮你写console.log Turbo Console Log: ctrl alt l 选中变量之后&am…...

OpenCV:在图像中添加高斯噪声、胡椒噪声
目录 在图像中添加高斯噪声 高斯噪声的特性 添加高斯噪声的实现 给图像添加胡椒噪声 实现胡椒噪声的步骤 相关阅读 OpenCV:图像处理中的低通滤波-CSDN博客 OpenCV:高通滤波之索贝尔、沙尔和拉普拉斯-CSDN博客 OpenCV:图像滤波、卷积与…...

DuckDB:Golang操作DuckDB实战案例
DuckDB是一个嵌入式SQL数据库引擎。它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的。DuckDB支持各种数据类型和SQL特性。凭借其在以内存为中心的环境中处理高速分析的能力,它迅速受到数据科学家和分析师的欢迎。在这篇博文中࿰…...
MySQL入门(数据库、数据表、数据、字段的操作以及查询相关sql语法)
天行健,君子以自强不息;地势坤,君子以厚德载物。 每个人都有惰性,但不断学习是好好生活的根本,共勉! 文章均为学习整理笔记,分享记录为主,如有错误请指正,共同学习进步。…...
kotlin的协程的基础概念
Kotlin的协程是一种用于简化异步编程的强大工具。 理解协程的基础概念可以帮助开发者有效地利用其能力。 以下是Kotlin协程的一些关键基础概念: 协程(Coroutines) : 协程是一种用于处理并发任务的编程模型,它可以在单…...

Spring--SpringMVC使用(接收和响应数据、RESTFul风格设计、其他扩展)
SpringMVC使用 二.SpringMVC接收数据2.1访问路径设置2.2接收参数1.param和json2.param接收数据3 路径 参数接收4.json参数接收 2.3接收cookie数据2.4接收请求头数据2.5原生api获取2.6共享域对象 三.SringMVC响应数据3.1返回json数据ResponseBodyRestController 3.2返回静态资源…...

隐藏php版本信息x-powered-by
在生产环境中,并不想让别人知道用的是什么版本的php,可以把x-powered-by隐藏掉 在nginx配置文件加上fastcgi_hide_header X-Powered-By; 如下图所示 配置修改后平滑重启nginx...

哈夫曼树(构建、编码、译码)(详细分析+C++代码实现)
D 哈夫曼树 题目要求 编写一个哈夫曼编码译码程序。针对一段文本,根据文本中字符出现频率构造哈夫曼树,给出每个字符的哈夫曼编码,并进行译码,计算编码前后文本大小。 为确保构建的哈夫曼树唯一,本题做如下限定&…...

C++ 二叉搜索树
目录 概念 性能分析 二叉搜索树的插入 二叉树的查找 二叉树的前序遍历 二叉搜索树的删除(重点) 完整代码 key与value的使用 概念 对于一个二叉搜索树 若它的左子树不为空,则左子树上所有的节点的值都小于等于根节点的值若它的右子树不为空…...

docker构建Java项目镜像常用的Java版本,国内私有仓库公网快速下载,解决从docker.io无法下载的问题
2015工作至今,10年资深全栈工程师,CTO,擅长带团队、攻克各种技术难题、研发各类软件产品,我的代码态度:代码虐我千百遍,我待代码如初恋,我的工作态度:极致,责任ÿ…...
低代码系统-氚云、简道云表单控件对比
组件对比 氚云 简道云 是否都有 1 单行文本 单行文本 ☑️ 2 多行文本 多行文本 ☑️ 3 日期 日期时间 ☑️ 4 数字 数字 ☑️ 5 单选框 单选按钮组 ☑️ 6 复选框 复选框组 ☑️ 7 下拉框 下拉框 ☑️ 8 附件 附件 ☑️ 9 图片 图片 ☑️ 10 地址 地…...

为什么IDEA提示不推荐@Autowired❓️如果使用@Resource呢❓️
前言 在使用 Spring 框架时,依赖注入(DI)是一个非常重要的概念。通过注解,我们可以方便地将类的实例注入到其他类中,提升开发效率。Autowired又是被大家最为熟知的方式,但很多开发者在使用 IntelliJ IDEA …...

Unity在WebGL中拍照和录视频
原工程地址https://github.com/eangulee/UnityWebGLRecoder Unity版本2018.3.6f1,有点年久失修了 https://github.com/xue-fei/Unity.WebGLRecorder 修改jslib适配了Unity2021 效果图 录制的视频 Unity在WebGL中拍照和录视频...

爬虫基础之爬取某站视频
目标网址:为了1/4螺口买小米SU7,开了一个月,它值吗?_哔哩哔哩_bilibili 本案例所使用到的模块 requests (发送HTTP请求)subprocess(执行系统命令)re (正则表达式操作)json (处理JSON数据) 需求分析: 视频的名称 F12 打开开发者工具 or 右击…...

mongoDB常见指令
即使我们自己开发用不到mongoDB,但是接手别人项目的时候,别人如果用了,我们也要会简单调试一下 虽然mongoDB用的不是sql语句,但语句的逻辑都是相似的,比如查看数据库、数据表,增删改查这些 我们下面以doc…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...

回溯算法学习
一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...
土建施工员考试:建筑施工技术重点知识有哪些?
《管理实务》是土建施工员考试中侧重实操应用与管理能力的科目,核心考查施工组织、质量安全、进度成本等现场管理要点。以下是结合考试大纲与高频考点整理的重点内容,附学习方向和应试技巧: 一、施工组织与进度管理 核心目标: 规…...
LUA+Reids实现库存秒杀预扣减 记录流水 以及自己的思考
目录 lua脚本 记录流水 记录流水的作用 流水什么时候删除 我们在做库存扣减的时候,显示基于Lua脚本和Redis实现的预扣减 这样可以在秒杀扣减的时候保证操作的原子性和高效性 lua脚本 // ... 已有代码 ...Overridepublic InventoryResponse decrease(Inventor…...

工厂方法模式和抽象工厂方法模式的battle
1.案例直接上手 在这个案例里面,我们会实现这个普通的工厂方法,并且对比这个普通工厂方法和我们直接创建对象的差别在哪里,为什么需要一个工厂: 下面的这个是我们的这个案例里面涉及到的接口和对应的实现类: 两个发…...
当下AI智能硬件方案浅谈
背景: 现在大模型出来以后,打破了常规的机械式的对话,人机对话变得更聪明一点。 对话用到的技术主要是实时音视频,简称为RTC。下游硬件厂商一般都不会去自己开发音视频技术,开发自己的大模型。商用方案多见为字节、百…...