当前位置: 首页 > news >正文

数据结构(四) B树/跳表

目录

1. LRU

2. B树

3. 跳表


1. LRU:

1.1 概念:

        最近最少使用算法, 就是cache缓存的算法. 因为cache(位于内存和cpu之间的存储设备)是一种容量有限的缓存, 有新的数据进入就需要将原本的数据进行排出.

 1.2 LRU cache实现:

#include <iostream>
#include <list>
#include <unordered_map>using namespace std;class LRUCache
{
public:LRUCache(int capacity){_capacity = capacity;}//获取数据.int get(int key){//找到数据key的值.auto hashit = _hashmap.find(key);if(hashit != _hashmap.end()){//找到对应关键词auto listit = hashit->second;pair<int, int> kv = *listit;//删除原来对应关键词数据;_list.erase(listit);//现在头插关键词数据._list.push_front(kv);//然后改变一下hashmap的key的值.._hashmap[key] = _list.begin();return kv.second;}else{return -1;}}//插入新的数据.key,value类型的.void put(int key, int value){auto hashit = _hashmap.find(key);if(hashit == _hashmap.end()){//找不到对应的数据;if(_list.size() >= _capacity){//大于容量._hashmap.erase(_list.back().first);//删除最后一个数据.(这个数据很久没访问过的);_list.pop_back();}_list.push_front(make_pair(key, value));_hashmap[key] = _list.begin();}else{auto listit = hashit->second;pair<int, int> kv = *listit;kv.second = value;_list.erase(listit);_list.push_front(kv);_hashmap[key] = _list.begin();}}private://链表保存各个cache里的数据.list<pair<int, int>> _list;size_t _capacity;//使用下标和cache数据指针进行映射.unordered_map<int, list<pair<int, int>>::iterator> _hashmap;
};

2. B树:

2.1 常见的搜索结构:

        顺序查找O(N), 二分查找O(logN), 二叉搜索树O(N), 二叉平衡树O(logN), 哈希O(1);

这些查找算法只能在数据量比较少, 以及内存可以一次进行寻找的, 如果数据量很大, 那么数据一次无法放到内存只能在磁盘中. 那么内存和磁盘进行交互的话时间就比较慢.

 2.2 B树的概念:

        一种平衡多叉树, 可以进行外查找的. 一棵M阶多叉树, 是一个平衡M路的平衡多叉树.满足性质:

(1) 根结点至少有两个孩子;

(2) 每个分支结点都包含k-1个关键字和k个孩子. 其中k的取值在[m/2, m]之间.

(3) 每个叶子结点都包含k-1个关键词; k的取值[m/2, m];

(4) 叶子结点都在一层, (5) 每个结点从小到大排序.

2.3 B树的插入分析:

        下面拿三叉树来举例,  M = 3, 那么每个结点可以最多存储2个数据(k范围[1, 3), k-1个关键词; 孩子的话永远比数据多一个, 就是3个孩子.

插入数据74, 49, 139, 145, 36, 53的过程. 如果结点满就需要分裂.

 2.4  B树的实现:

(1) 结构:

        采用一个关键词数组以及存放关键词的孩子结点, 还有一个保存关键词的父亲结点.

//类型为k, 数量为M.
//M层数.
template<class K, size_t M>
struct BTreeNode
{//创建关键词数组; 以及相对应的孩子结点.K _keys[M];//孩子结点的指针.BTreeNode<K, M>* _subs[M+1];BTreeNode<K, M>* _parent;//记录存储关键字数.size_t _n;BTreeNode(){for(size_t i = 0; i < M; i++){_keys[i] = K();_subs[i] = nullptr;}_subs[M] = nullptr;_parent = nullptr;_n = 0;}
};template<class K, size_t M>
class BTree
{typedef BTreeNode<K, M> Node;private:Node* _root = nullptr;
};
(2) 查找:  

      

//查找数据:pair<Node*, int> Find(const K& key){Node* parent = nullptr;Node* cur = _root;//遍历B树结点.while(cur){size_t i = 0;while(i < cur->_n){//小于关键词不存在.if(key < cur->_keys[i]){break;}//大于就在右边.else if(key > cur->_keys[i]){i++;}else{//相等返回cur结点以及下标位置.return make_pair(cur, i);}}//本关键词找不到就到另外一个关键词查看.parent = cur;cur = cur->subs[i];}//找不到就返回空.return make_pair(parent, -1);}
(3) 插入关键字:

        如果满了首先找到中间结点, 中间结点的后面结点移动新结点, 然后中间结点放到parent数组中.

//
(4) 遍历关键词:

        遍历每个结点的孩子结点, 先左子树, 再根, 后右子树即可.

    void _InOrder(Node* cur){if(cur == nullptr)return;size_t i = 0;for(; i < cur->_n; i++){//先遍历左子树._InOrder(cur->_subs[i]);//打印根子树.cout << cur->_keys[i] << " ";}//再去遍历右子树._InOrder(cur->_subs[i]);}
(5) B树性能分析:

        查找效率大概就是O(logM-1)O(logm/2); 查询到结点就再使用二分查找很快就可以找到. l例如620亿个数据, 树的度是1024的话, 最多需要查询4次. 这样就可以减少磁盘io次数.

2.5 B+树:

        在B树上做了些修改: (1) 分支节点的子树指针和关键字个数相同;

(2) 叶子结点增加一个连接指针将叶子结点连接在一起.

(3) 分支节点的子树指针p[i]指向关键字值大小在[k[i],k[i+1])区间之间

(4) 所有关键字及其映射数据都在叶子节点出现

所有的关键字都出现在叶子结点的链表中, 并且有序;

不可能在分支结点命中, 分支结点相当与是叶子结点的索引, 叶子结点才是真正存储数据的.

        B+树的增加只会改变原结点以及父结点, 因为将一半结点给兄弟结点, 源节点给父亲结点即可.

 2.6 B*树:

        B+树的变形, 增加非叶子结点和非根结点的链表指针.

B*树增加数据就要将看兄弟结点没满就将数据插入到兄弟结点中, 其次就是满的话将数据创建一个新的结点, 然后将1/3数据给新结点, 重新修改一下父结点的指向孩子的指针.

 2.6 总结:

(1) B树: 有序数组和平衡多叉树;

(2) B+树: 有序数组链表和平衡多叉树;

(3) B*树: 一个饱满, 均匀, 空间利用率高的B+树.

 2.7 B树的运用:

        在MySQL中使用到索引, 高效获取数据的数据结构, 索引在于表, 而不是数据库.

(1) MyISAM: (非聚簇索引)

        不支持事务, 支持全文索引, 叶子结点存放的是数据的地址. 包含主索引和辅助索引, 主索引的key不能重复, 辅助索引可以. 这种数据和索引不在一起的就是非聚簇索引.

(2) Innodb:

        支持事务, 支持B+树索引、全文索引、哈希索引。它是将数据和索引存放在一起; 数据存储的是值不是地址, 这种就是聚簇索引.

3. 跳表:

3.1 概念:

相关文章:

数据结构(四) B树/跳表

目录 1. LRU 2. B树 3. 跳表 1. LRU: 1.1 概念: 最近最少使用算法, 就是cache缓存的算法. 因为cache(位于内存和cpu之间的存储设备)是一种容量有限的缓存, 有新的数据进入就需要将原本的数据进行排出. 1.2 LRU cache实现: #include <iostream> #include <list>…...

Arcgis国产化替代:Bigemap Pro正式发布

在数字化时代&#xff0c;数据如同新时代的石油&#xff0c;蕴含着巨大的价值。从商业决策到科研探索&#xff0c;从城市规划到环境监测&#xff0c;海量数据的高效处理、精准分析与直观可视化&#xff0c;已成为各行业突破发展瓶颈、实现转型升级的关键所在。历经十年精心打磨…...

LBS 开发微课堂|AI向导接口服务:重塑用户的出行体验

为了让广大开发者 更深入地了解 百度地图开放平台的 技术能力 轻松掌握满满的 技术干货 更加简单地接入 位置服务 我们特别推出了 “位置服务&#xff08;LBS&#xff09;开发微课堂” 系列技术案例 第六期的主题是 《AI向导接口服务的能力与接入方案》 随着地图应…...

AI导航工具我开源了利用node爬取了几百条数据

序言 别因今天的懒惰&#xff0c;让明天的您后悔。输出文章的本意并不是为了得到赞美&#xff0c;而是为了让自己能够学会总结思考&#xff1b;当然&#xff0c;如果有幸能够给到你一点点灵感或者思考&#xff0c;那么我这篇文章的意义将无限放大。 背景 随着AI的发展市面上…...

openstack单机安装

openstack单机安装 网卡配置安装依赖开启虚拟环境修改配置文件 部署openstack部署openstack客户端访问可视化界面Horizon补充 本篇主要讲述Ubuntu2204单机安装openstackstable/2024.2。其他版本的Linux系统或者openstack版本&#xff0c;请参考openstack官网。 网卡配置 需要配…...

Vue3实现小红书瀑布流布局任意组件动态更新页面方法实践

思路 1.首先定义一个瀑布流容器&#xff0c;它的高度暂定&#xff08;后面会更新&#xff09;。把需要布局的组件&#xff08;这里叫做waterfall-item&#xff09;放在瀑布流容器里面渲染出来。使用绝对定位&#xff08;position: absolute&#xff09;&#xff0c;把它移到屏幕…...

深度学习项目--基于LSTM的糖尿病预测探究(pytorch实现)

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 前言 LSTM模型一直是一个很经典的模型&#xff0c;一般用于序列数据预测&#xff0c;这个可以很好的挖掘数据上下文信息&#xff0c;本文将使用LSTM进行糖尿病…...

Next.js 实战 (十):中间件的魅力,打造更快更安全的应用

什么是中间件&#xff1f; 在 Next.js 中&#xff0c;中间件&#xff08;Middleware&#xff09;是一种用于处理每个传入请求的功能。它允许你在请求到达页面之前对其进行修改或响应。 通过中间件&#xff0c;你可以实现诸如日志记录、身份验证、重定向、CORS配置、压缩等任务…...

python+playwright自动化测试(四):元素操作(键盘鼠标事件)、文件上传

目录 鼠标事件 悬停 移动 按键 点击 滚轮操作 拖拽 键盘事件 输入文本内容 type输入内容 fill输入内容 按键操作press 文件上传 下拉选/单选框/复选框 滚动条操作 鼠标事件 悬停 page.get_by_text(设置,exactTrue).nth(1).hover() 移动 page.mouse.move(x33…...

【论文+源码】Diffusion-LM 改进了可控文本生成

这篇论文探讨了如何在不重新训练的情况下控制语言模型&#xff08;LM&#xff09;的行为&#xff0c;这是自然语言生成中的一个重大开放问题。尽管近期一些研究在控制简单句子属性&#xff08;如情感&#xff09;方面取得了成功&#xff0c;但在复杂的细粒度控制&#xff08;如…...

双目立体校正和Q矩阵

立体校正 对两个摄像机的图像平面重投影&#xff0c;使二者位于同一平面&#xff0c;而且左右图像的行对准。 Bouguet 该算法需要用到双目标定后外参(R&#xff0c;T) 从上图中可以看出&#xff0c;该算法主要分为两步&#xff1a; 使成像平面共面 这个办法很直观&#xff…...

vscode 自用插件

vscode按住ctrl鼠标左键无法跟踪跳转方法名&#xff0c;装这些插件就可以 vscode-elm-jump:常规的代码跳转定义 Vue CSS Peek:跳转css定义 vue-helper:变量函数只跳转定义 Vetur 代码提示 Baidu Comate 自动帮你写console.log Turbo Console Log: ctrl alt l 选中变量之后&am…...

OpenCV:在图像中添加高斯噪声、胡椒噪声

目录 在图像中添加高斯噪声 高斯噪声的特性 添加高斯噪声的实现 给图像添加胡椒噪声 实现胡椒噪声的步骤 相关阅读 OpenCV&#xff1a;图像处理中的低通滤波-CSDN博客 OpenCV&#xff1a;高通滤波之索贝尔、沙尔和拉普拉斯-CSDN博客 OpenCV&#xff1a;图像滤波、卷积与…...

DuckDB:Golang操作DuckDB实战案例

DuckDB是一个嵌入式SQL数据库引擎。它与众所周知的SQLite非常相似&#xff0c;但它是为olap风格的工作负载设计的。DuckDB支持各种数据类型和SQL特性。凭借其在以内存为中心的环境中处理高速分析的能力&#xff0c;它迅速受到数据科学家和分析师的欢迎。在这篇博文中&#xff0…...

MySQL入门(数据库、数据表、数据、字段的操作以及查询相关sql语法)

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…...

kotlin的协程的基础概念

Kotlin的协程是一种用于简化异步编程的强大工具。 理解协程的基础概念可以帮助开发者有效地利用其能力。 以下是Kotlin协程的一些关键基础概念&#xff1a; 协程&#xff08;Coroutines&#xff09; &#xff1a; 协程是一种用于处理并发任务的编程模型&#xff0c;它可以在单…...

Spring--SpringMVC使用(接收和响应数据、RESTFul风格设计、其他扩展)

SpringMVC使用 二.SpringMVC接收数据2.1访问路径设置2.2接收参数1.param和json2.param接收数据3 路径 参数接收4.json参数接收 2.3接收cookie数据2.4接收请求头数据2.5原生api获取2.6共享域对象 三.SringMVC响应数据3.1返回json数据ResponseBodyRestController 3.2返回静态资源…...

隐藏php版本信息x-powered-by

在生产环境中&#xff0c;并不想让别人知道用的是什么版本的php&#xff0c;可以把x-powered-by隐藏掉 在nginx配置文件加上fastcgi_hide_header X-Powered-By; 如下图所示 配置修改后平滑重启nginx...

哈夫曼树(构建、编码、译码)(详细分析+C++代码实现)

D 哈夫曼树 题目要求 编写一个哈夫曼编码译码程序。针对一段文本&#xff0c;根据文本中字符出现频率构造哈夫曼树&#xff0c;给出每个字符的哈夫曼编码&#xff0c;并进行译码&#xff0c;计算编码前后文本大小。 为确保构建的哈夫曼树唯一&#xff0c;本题做如下限定&…...

C++ 二叉搜索树

目录 概念 性能分析 二叉搜索树的插入 二叉树的查找 二叉树的前序遍历 二叉搜索树的删除&#xff08;重点&#xff09; 完整代码 key与value的使用 概念 对于一个二叉搜索树 若它的左子树不为空&#xff0c;则左子树上所有的节点的值都小于等于根节点的值若它的右子树不为空…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我&#xff0c;后续持续新增专题博文&#xff0c;谢谢&#xff01;&#xff01;&#xff01;】 上一篇我们讲了&#xff1a; 这一篇我们开始讲&#xff1a; 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下&#xff1a; 一、场景操作步骤 操作步…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域&#xff1a;无处不在的数字助手 2、 计算机的进化史&#xff1a;从算盘到量子计算 3、计算机的分类&#xff1a;不止 “台式机和笔记本” 4、计算机的组件&#xff1a;硬件与软件的协同 4.1 硬件&#xff1a;五大核心部件 4.2 软件&#…...