当前位置: 首页 > news >正文

计算机毕业设计hadoop+spark+hive民宿推荐系统 酒店推荐系统 民宿价格预测 酒店价格 预测 机器学习 深度学习 Python爬虫 HDFS集群

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

作者简介:Java领域优质创作者、CSDN博客专家 、CSDN内容合伙人、掘金特邀作者、阿里云博客专家、51CTO特邀作者、多年架构师设计经验、多年校企合作经验,被多个学校常年聘为校外企业导师,指导学生毕业设计并参与学生毕业答辩指导,有较为丰富的相关经验。期待与各位高校教师、企业讲师以及同行交流合作

主要内容:Java项目、Python项目、前端项目、PHP、ASP.NET、人工智能与大数据、单片机开发、物联网设计与开发设计、简历模板、学习资料、面试题库、技术互助、就业指导等

业务范围:免费功能设计、开题报告、任务书、中期检查PPT、系统功能实现、代码编写、论文编写和辅导、论文降重、长期答辩答疑辅导、腾讯会议一对一专业讲解辅导答辩、模拟答辩演练、和理解代码逻辑思路等。

收藏点赞不迷路  关注作者有好处

                                         文末获取源码

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

《Hadoop+Spark+Hive民宿推荐系统》开题报告

一、研究背景与意义

随着互联网旅游业的蓬勃发展和大数据技术的广泛应用,民宿行业迎来了前所未有的发展机遇。然而,面对海量的民宿信息和多样化的用户需求,如何高效、精准地为用户推荐符合其个性化需求的民宿,成为当前民宿平台面临的一大挑战。传统的推荐系统大多基于简单的规则或统计方法,难以处理大规模数据和复杂的用户行为模式。因此,本研究旨在开发一款基于Hadoop、Spark和Hive的民宿推荐系统,利用大数据技术对民宿数据进行深度挖掘和分析,为用户提供个性化的民宿推荐服务,从而提升用户体验,促进民宿行业的健康发展。

二、研究目标

本研究的主要目标是开发一款基于Hadoop、Spark和Hive的高效、智能民宿推荐系统。该系统将整合民宿信息、用户行为数据以及外部数据资源,运用先进的推荐算法,为用户提供个性化的民宿推荐服务,同时提升民宿平台的运营效率和用户满意度。

三、研究内容
  1. 民宿数据采集与整合:收集并整合各大民宿平台上的民宿信息,包括位置、价格、评分、图片、评论等,以及用户的浏览、预订、评价等行为数据。

  2. 用户画像构建:基于用户行为数据,运用数据挖掘和机器学习技术,构建用户画像,包括用户偏好、消费习惯、出行计划等。

  3. 推荐算法研究与实现:研究并应用先进的推荐算法,如协同过滤、深度学习等,结合民宿信息和用户画像,生成个性化的民宿推荐列表。

  4. 系统架构设计与实现:设计并实现基于Hadoop、Spark和Hive的分布式数据处理系统,以及前后端交互界面,确保系统的稳定性和易用性。

  5. 系统测试与优化:对系统进行全面的测试,包括功能测试、性能测试、安全测试等,并根据测试结果进行系统优化。

四、研究方法与技术路线
  1. 数据采集:利用Python爬虫技术从各大民宿平台抓取民宿信息和用户行为数据,同时考虑数据合规性和隐私保护。

  2. 数据预处理:对采集到的数据进行清洗、去重、格式化等预处理操作,为后续分析提供高质量的数据基础。

  3. 数据存储与管理:利用Hadoop的HDFS进行数据存储,Hive进行数据仓库管理,便于后续的数据分析和挖掘。

  4. 数据处理与分析:使用Spark进行大规模数据处理和分析,提取用户特征和民宿信息,为推荐算法提供数据支持。

  5. 推荐算法实现:研究并比较多种推荐算法,选择最适合民宿推荐的算法或算法组合,并结合用户画像和民宿信息生成推荐列表。

  6. 系统开发与集成:使用Java或Python等编程语言开发系统后端,前端采用React或Vue等框架实现用户交互界面,完成前后端集成和测试。

  7. 系统部署与运维:将系统部署到云平台上,进行资源管理和监控,确保系统的稳定运行和可扩展性。

五、预期成果
  1. 开发一款基于Hadoop、Spark和Hive的民宿推荐系统:该系统能够高效处理大规模民宿数据,为用户提供个性化的民宿推荐服务。

  2. 提出一种结合用户画像和民宿信息的推荐算法:该算法能够准确捕捉用户偏好,提高推荐准确度和用户满意度。

  3. 发表相关学术论文或技术报告:将研究成果整理成学术论文或技术报告,分享给学术界和业界同行。

六、研究计划与进度安排
  1. 第一阶段(1-2个月):进行文献综述和需求分析,明确研究目标和内容;确定技术选型和数据采集方案;搭建Hadoop、Spark和Hive环境。

  2. 第二阶段(3-4个月):实现民宿数据的采集、预处理和存储;构建用户画像和民宿信息库;研究并应用推荐算法。

  3. 第三阶段(5-6个月):设计并实现民宿推荐系统的功能模块,包括用户管理、民宿信息管理、推荐算法模块等;进行初步测试。

  4. 第四阶段(7-8个月):进行系统测试和优化,包括功能测试、性能测试、安全测试等;根据测试结果进行系统调整和优化。

  5. 第五阶段(9-10个月):撰写论文或技术报告,准备答辩材料;参加学术会议或技术论坛,分享研究成果。

七、参考文献

(此处省略具体参考文献,实际撰写时应列出所有引用的文献,包括相关领域的学术论文、技术报告、书籍等。)


以上是《Hadoop+Spark+Hive民宿推荐系统》的开题报告,详细阐述了研究背景、目标、内容、方法、预期成果、研究计划及进度安排,为后续的系统开发和研究工作提供了明确的方向和框架。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

相关文章:

计算机毕业设计hadoop+spark+hive民宿推荐系统 酒店推荐系统 民宿价格预测 酒店价格 预测 机器学习 深度学习 Python爬虫 HDFS集群

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...

亲测有效!解决PyCharm下PyEMD安装报错 ModuleNotFoundError: No module named ‘PyEMD‘

解决PyCharm下PyEMD安装报错 PyEMD安装报错解决方案 PyEMD安装报错 PyCharm下通过右键自动安装PyEMD后运行报错ModuleNotFoundError: No module named ‘PyEMD’ 解决方案 通过PyCharm IDE python package搜索EMD-signal,选择版本后点击“install”执行安装...

Gin 应用并注册 pprof

pprof 配置与使用步骤 1. 引言 通过下面操作,你可以顺利集成和使用 pprof 来收集和分析 Gin 应用的性能数据。你可以查看 CPU 使用情况、内存占用、以及其他运行时性能数据,并通过图形化界面进行深度分析。 1. 安装依赖 首先,确保安装了 gi…...

Jenkins 启动

废话 这一阵子感觉空虚,心里空捞捞的,总想找点事情做,即使这是一件微小的事情,空余时间除了骑车、打球,偶尔朋友聚会 … 还能干什么呢? 当独自一人时,究竟可以做点什么,填补这空虚…...

第20篇:Python 开发进阶:使用Django进行Web开发详解

第20篇:使用Django进行Web开发 内容简介 在上一篇文章中,我们深入探讨了Flask框架的高级功能,并通过构建一个博客系统展示了其实际应用。本篇文章将转向Django,另一个功能强大且广泛使用的Python Web框架。我们将介绍Django的核…...

文献引用指南ChatGPT提示词分享

文献引用指南 在学术写作中,准确引用是至关重要的环节。它不仅能够为您的研究提供坚实的学术基础,还能确保您尊重并认可他人的学术成果,从而有效避免抄袭的问题。而ChatGPT在这一方面同样能够为您提供有力的支持。借助ChatGPT,您…...

程序代码篇---C++类.c\.h

文章目录 前言第一部分:C中的类1.类的定义2.成员变量(属性)3.成员函数(方法)4.访问修饰符私有受保护公有 5.构造函数和析构函数成员初始化列表方法重载 6.继承7.多态8.友元 第二部分:.c与.h文件头文件&…...

@RabbitListener处理重试机制完成后的异常捕获

application.properties中配置开启手动签收 spring.rabbitmq.listener.direct.acknowledge-modemanual spring.rabbitmq.listener.simple.acknowledge-modemanual定义一个重试器 Slf4j Configuration public class RabbitMQRetryConfing {Bean("customRetry")publi…...

Mac 上管理本地 Go 版本

在 Mac 上修改本地 Go 版本可以通过多种方法实现。以下是几种常见且详细的操作方案: 方法一:使用 goenv 管理多版本(推荐) 适用场景:需要频繁切换不同 Go 版本,适合长期开发者。 步骤: 安装 g…...

低代码系统-产品架构案例介绍、得帆云(八)

产品名称 得帆云DeCode低代码平台-私有化 得帆云DeMDM主数据管理平台 得帆云DeCode低代码平台-公有云 得帆云DePortal企业门户 得帆云DeFusion融合集成平台 得帆云DeHoop数据中台 名词 概念 云原生 指自己搭建的运维平台,区别于阿里云、腾讯云 Dehoop 指…...

免费GPU算力,不花钱部署DeepSeek-R1

在人工智能和大模型技术飞速发展的今天,越来越多的开发者和研究者希望能够亲自体验和微调大模型,以便更好地理解和应用这些先进的技术。然而,高昂的GPU算力成本往往成为了阻碍大家探索的瓶颈。幸运的是,腾讯云Cloud Studio提供了免…...

JavaEE:多线程进阶

JavaEE:多线程进阶 一、对比不同锁策略之间的应用场景及其区别1. 悲观锁 和 乐观锁1.1 定义和原理1.2 应用场景1.3 示例代码 2. 重量级锁 和 轻量级锁2.1 定义和原理2.2 应用场景2.3 示例代码 3. 挂起等待锁 和 自旋锁3.1 定义和原理3.2 应用场景3.3 示例代码 4. 几…...

不只是mini-react第二节:实现最简fiber

省流|总结 首先&#xff0c;我们编写JSX文件&#xff0c;并通过Babel等转换工具将其转化为createElement()函数的调用&#xff0c;最终生成虚拟 DOM&#xff08;Vdom&#xff09;格式。举个例子&#xff1a; // 原始 JSX const App <div>hi-mini-react</div>;//…...

C++实现设计模式---命令模式 (Command)

命令模式 (Command) 命令模式 是一种行为型设计模式&#xff0c;它将请求封装为一个对象&#xff0c;从而使得可以用不同的请求对客户端进行参数化、对请求排队或记录日志&#xff0c;以及支持可撤销的操作。 意图 将操作的调用者与接收者分离&#xff0c;通过将请求封装为独…...

设计模式的艺术-享元模式

结构性模式的名称、定义、学习难度和使用频率如下表所示&#xff1a; 1.如何理解享元模式 当一个软件系统在运行时产生的对象数量太多&#xff0c;将导致运行代价过高&#xff0c;带来系统性能下降等问题。 在享元模式中&#xff0c;存储这些共享实例对象的地方称为享元池&…...

Linux的权限和一些shell原理

目录 shell的原理 Linux权限 sudo命令提权 权限 文件的属性 ⽂件类型&#xff1a; 基本权限&#xff1a; chmod改权限 umask chown 该拥有者 chgrp 改所属组 最后&#xff1a; 目录权限 粘滞位 shell的原理 我们广义上的Linux系统 Linux内核Linux外壳 Linux严格…...

【Postgres_Python】使用python脚本批量创建和导入多个PG数据库

之前批量创建和导入数据库分为2个python脚本进行&#xff0c;现整合优化代码合并为一个python脚本&#xff0c;可同步实现数据库的创建和数据导入。之前的文章链接&#xff1a; 【Postgres_Python】使用python脚本批量创建PG数据库 【Postgres_Python】使用python脚本将多个.S…...

Ubuntu安装GitLab

在 Ubuntu 上安装 GitLab 的步骤如下。这里以 GitLab Community Edition&#xff08;CE&#xff09;为例&#xff1a; 前提条件 确保你的 Ubuntu 系统是 20.04 或更高版本。确保你的系统满足 GitLab 的硬件要求。 步骤 更新系统包&#xff1a; sudo apt update sudo apt upg…...

网络知识小科普--5

81、什么是组播路由? 组播路由是一种有针对性的广播形式&#xff0c;将消息发送到所选择的用户组&#xff0c;而不是将其发送到子网上的所有用户。 82、加密在网络上的重要性是什么? 加密是将信息转换成用户不可读的代码的过程。然后使用秘密密钥或密码将其翻译或解密回其…...

JavaScript学习记录23

第十一节 JSON对象 1. JSON 格式 JSON 格式&#xff08;JavaScript Object Notation 的缩写&#xff09;是一种用于数据交换的文本格式&#xff0c;2001年由 Douglas Crockford 提出&#xff0c;目的是取代繁琐笨重的 XML 格式。 相比 XML 格式&#xff0c;JSON 格式有两个显…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统

&#x1f49d;&#x1f49d;&#x1f49d;欢迎莅临我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐&#xff1a;「storms…...

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...

门静脉高压——表现

一、门静脉高压表现 00:01 1. 门静脉构成 00:13 组成结构&#xff1a;由肠系膜上静脉和脾静脉汇合构成&#xff0c;是肝脏血液供应的主要来源。淤血后果&#xff1a;门静脉淤血会同时导致脾静脉和肠系膜上静脉淤血&#xff0c;引发后续系列症状。 2. 脾大和脾功能亢进 00:46 …...

Netty自定义协议解析

目录 自定义协议设计 实现消息解码器 实现消息编码器 自定义消息对象 配置ChannelPipeline Netty提供了强大的编解码器抽象基类,这些基类能够帮助开发者快速实现自定义协议的解析。 自定义协议设计 在实现自定义协议解析之前,需要明确协议的具体格式。例如,一个简单的…...

MCP和Function Calling

MCP MCP&#xff08;Model Context Protocol&#xff0c;模型上下文协议&#xff09; &#xff0c;2024年11月底&#xff0c;由 Anthropic 推出的一种开放标准&#xff0c;旨在统一大模型与外部数据源和工具之间的通信协议。MCP 的主要目的在于解决当前 AI 模型因数据孤岛限制而…...