计算机组成原理(2)王道学习笔记
数据的表示和运算
提问:1.数据如何在计算机中表示?
2.运算器如何实现数据的算术、逻辑运算?

十进制计数法
古印度人发明了阿拉伯数字:0,1,2,3,4,5,6,7,8,9(符号反映权重)
十进制:975=9x100+7x10+5x1 (符号所在的位置也反映权重)
进位计数制:有0~9,共十种符号。逢十进一

以此类推,十进制的这种计数方式,我们会用每一个数码位乘以这个数码位所对应的一个实际的权值。这些权值都是十的某次方,因此我们才把它叫做十进制。
其实呢,十进制能推广到 r 进制。r 进制里,基数就是 r,每个数码位能用 r 种符号。像古巴比伦人用的 60 进制,每个数码位就有 60 种符号,现在咱们算时间,1 小时 60 分钟,就是 60 进制的应用呢。不过在计算机世界里,常用的是二进制、八进制和十六进制。
r进制计数法

1. 二进制:计算机中最常用基数为2的计数制即二进制。它仅有0和1两种数码,计数规则是“逢二进一”,任意数位的权为
,i是所在位数。
2. 八进制:基数是8,有0 - 7共8个不同数码,计数“逢八进一”。由于r = 8=
,所以把二进制中的3位数码编为一组就是1位八进制数码,二者转换很方便。
3. 十六进制:基数为16,有0 - 9、A - F共16个不同数码,其中A - F分别表示10 - 15,计数“逢十六进一”。因为r = 16 =
,所以4位二进制数码与1位十六进制数码相对应。可以用后缀字母标识数的进制,用B表示二进制数,用D表示十进制数(通常直接省略),用H表示十六进制数,有时也用前缀0x表示十六进制数。
在计算机中,有二进制、八进制、十进制、十六进制
计算机喜欢二进制,一是因为能用两个稳定状态的物理器件表示 0 和 1,像高电平低电平、电容电荷正负。二是 0 和 1 对应逻辑的假和真,方便做逻辑算。三是能用逻辑门电路做算术运算。不过二进制给人看不太方便,所以也常用八进制和十六进制。

二进制数转换为八进制数和十六进制数
对于一个二进制小数(既包含整数部分,又包含小数部分),在转换时应以小数点为界。其整数部分,从小数点开始往左数,将一串二进制数分为3位(八进制)一组或4位(十六进制)一组,在数的最左边可根据需要加“0”补齐;对于小数部分,从小数点开始往右数,也将一串二进制数分为3位一组或4位一组,在数的最右边也可根据需要加“0”补齐。最终使总的位数为3或4的整数倍,然后分别用对应的八进制数或十六进制数取代。
如果我们想要将二进制转换为八进制,那么只需要三个二进制为一组,然后将每组转换为对应的八进制符号即可。
各进制的常见书写方式
| 进制 | 书写方式 1 | 书写方式 2 | 书写方式 3 |
|---|---|---|---|
| 二进制 | 1010001010010B | - | |
| 八进制 | - | - | |
| 十六进制 | 1652H | 0x1652 | |
| 十进制 | 1652D | - |
十进制转换成任意进制数
一个十进制数转换为任意进制数,通常采用基数乘除法(注意,基数的值与进制相关)。这种转换方法对十进制数的整数部分和小数部分将分别进行处理,对整数部分采用除基取余法,对小数部分采用乘基取整法,最后将整数部分与小数部分的转换结果拼接起来。
除基取余法(用于整数部分):对整数部分进行除基取余操作,最先获取的余数是数的最低位,最后获取的余数是数的最高位(即“除基取余,先余为低,后余为高” ),当商为0时操作结束。
乘积取整法(小数部分):小数部分乘基取整,最先取得的整数为数的最高位,最后取得的整数为数的最低位(乘基取整,先整为高,后整为低),乘积为1.0(或满足精度要求)时结束。

注意:
- 十进制数转换为任意进制数时,对于除基取余法和乘基取整法,以及所取之数放置位置的原理,应结合 r 进制数的数值表示公式思考,避免死记硬背。
- 在计算机中,整数和小数有区别,整数可连续表示,小数是离散的,不是每个十进制小数都能用二进制小数精确表示(如 0.3 乘二取整无法得到精确结果),但任意二进制小数都可用十进制小数精确表示,需引起重视。
真值和机器数
真值:符合人类习惯的数字
机器数:数字实际存到机器里的形式,正负号需要被“数字化”。
| 类型 | 定义 | 正数示例(以 + 15 为例) | 负数示例(以 - 8 为例) |
|---|---|---|---|
| 原码 | 最高位为符号位,0 表示正数,1 表示负数,其余位为数值位的二进制表示 | 01111(假设用 5 位二进制表示,下同) | 11000 |
| 反码 | 正数的反码与原码相同;负数的反码是在原码的基础上,符号位不变,其余各位取反 | 01111 | 10111 |
| 补码 | 正数的补码与原码相同;负数的补码是在反码的基础上 + 1 | 01111 | 11000 |
| 移码 | 在补码的基础上,将符号位取反(一般用于浮点数的阶码表示) | 11111 | 01000 |
相关文章:
计算机组成原理(2)王道学习笔记
数据的表示和运算 提问:1.数据如何在计算机中表示? 2.运算器如何实现数据的算术、逻辑运算? 十进制计数法 古印度人发明了阿拉伯数字:0,1,2,3,4,5,6&#…...
【AI日记】25.01.26
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】【读书与思考】 AI kaggle 比赛:Forecasting Sticker Sales 读书 书名:自由宪章 律己 AI:6 小时作息:00:30-8:30短视频:大于 1 小时读书和写作&a…...
三. Redis 基本指令(Redis 快速入门-03)
三. Redis 基本指令(Redis 快速入门-03) 文章目录 三. Redis 基本指令(Redis 快速入门-03)1. Redis 基础操作:2. 对 key(键)操作:3. 对 DB(数据库)操作4. 最后: Reids 指定大全(指令文档): https://www.redis.net.cn/order/ Redis…...
设计模式的艺术-代理模式
结构性模式的名称、定义、学习难度和使用频率如下表所示: 1.如何理解代理模式 代理模式(Proxy Pattern):给某一个对象提供一个代理,并由代理对象控制对原对象的引用。代理模式是一种对象结构型模式。 代理模式类型较多…...
C#新语法
目录 顶级语句(C#9.0) using 全局using指令(C#10.0) using资源管理问题 using声明(C#8.0) using声明陷阱 错误写法 正确写法 文件范围的命名空间声明(C#10.0) 可空引用类型…...
微信小程序压缩图片
由于wx.compressImage(Object object) iOS 仅支持压缩 JPG 格式图片。所以我们需要做一下特殊的处理: 1.获取文件,判断文件是否大于设定的大小 2.如果大于则使用canvas进行绘制,并生成新的图片路径 3.上传图片 async chooseImage() {let …...
通义灵码插件保姆级教学-IDEA(安装及使用)
一、JetBrains IDEA 中安装指南 官方下载指南:通义灵码安装教程-阿里云 步骤 1:准备工作 操作系统:Windows 7 及以上、macOS、Linux; 下载并安装兼容的 JetBrains IDEs 2020.3 及以上版本,通义灵码与以下 IDE 兼容&…...
windows下本地部署安装hadoop+scala+spark-【不需要虚拟机】
注意版本依赖【本实验版本如下】 Hadoop 3.1.1 spark 2.3.2 scala 2.11 1.依赖环境 1.1 java 安装java并配置环境变量【如果未安装搜索其他教程】 环境验证如下: C:\Users\wangning>java -version java version "1.8.0_261" Java(TM) SE Runti…...
倍频增量式编码器--角度插值法输出A,B(Aangular Interpolation)
问题是: 最大速度,周期刻度,最小细分刻度,可以计算得到: 结论: 按照最高速度采样;数字A,B输出间隔时间:按照计算角度 插入细分角度运算算时间(最快速度)&a…...
LSM对于特殊数据的优化手段
好的,我现在需要帮助用户理解如何针对不同的特殊工作负载优化LSM树结构。用户提到了四种情况:时态数据、小数据、半排序数据和追加为主的数据。我需要分别解释每种情况下的优化方法,并参考用户提供的LHAM的例子,可能还有其他例子。…...
83,【7】BUUCTF WEB [MRCTF2020]你传你[特殊字符]呢
进入靶场 图片上这个人和另一道题上的人长得好像 54,【4】BUUCTF WEB GYCTF2020Ezsqli-CSDN博客 让我们上传文件 桌面有啥传啥 /var/www/html/upload/344434f245b7ac3a4fae0a6342d1f94a/123.php.jpg 成功后我就去用蚁剑连了,连不上 看了别的wp知需要…...
Go语言入门指南(二): 数据类型
文章创作不易,麻烦大家点赞关注转发一键三连。 在上一篇文章,我们已经完成了开发环境的搭建,成功创建了第一个“Hello, World”程序,并且对变量的声明和初始化有了初步的认识。在这篇文章中,我们将主要介绍Go语言的数据…...
2025.1.26机器学习笔记:C-RNN-GAN文献阅读
2025.1.26周报 文献阅读题目信息摘要Abstract创新点网络架构实验结论缺点以及后续展望 总结 文献阅读 题目信息 题目: C-RNN-GAN: Continuous recurrent neural networks with adversarial training会议期刊: NIPS作者: Olof Mogren发表时间…...
FAST-DDS and ROS2 RQT connect
reference: FAST-DDS与ROS2通信_ros2 收fastdds的数据-CSDN博客 software version: repositories: foonathan_memory_vendor: type: git url: https://github.com/eProsima/foonathan_memory_vendor.git version: v1.1.0 fastcdr: …...
GESP2024年3月认证C++六级( 第三部分编程题(2)好斗的牛)
参考程序(暴力枚举) #include <iostream> #include <vector> #include <algorithm> using namespace std; int N; vector<int> a, b; int ans 1e9; int main() {cin >> N;a.resize(N);b.resize(N);for (int i 0; i &l…...
记一次STM32编译生成BIN文件过大的问题(基于STM32CubeIDE)
文章目录 问题描述解决方法更多拓展 问题描述 最近在一个项目中使用了 STM32H743 单片机(基于 STM32CubeIDE GCC 开发),它的内存分为了 DTCMRAM RAM_D1 RAM_D2 …等很多部分。其中 DTCM 的速度是比通常的内存要快的,缺点是不支持…...
【暴力洗盘】的实战技术解读-北玻股份和三变科技
龙头的上攻与回调动作都是十分惊人的。不惊人不足以吸引投资者的关注,不惊人也就不能成为龙头了。 1.建筑节能概念--北玻股份 建筑节能,是指在建筑材料生产、房屋建筑和构筑物施工及使用过程中,满足同等需要或达到相同目的的条件下…...
Day42:列表的组合
在Python 中,列表的组合是指将两个或多个列表合并成一个新的列表。Python 提供了多种方法来实现这一操作,每种方法都有其特定的应用场景。今天我们将学习如何通过不同的方式组合列表。 1. 使用 运算符进行列表合并 最直接的方式是使用 运算符&#x…...
mantisbt添加修改用户密码
文章目录 问题当前版本安装流程创建用户修改密码老的方式探索阶段 问题 不太好改密码啊。貌似必须要域名要发邮件。公司太穷,看不见的东西不关心,只能改源码了。 当前版本 当前mantisbt版本 2.27 php版本 7.4.3 安装流程 (下面流程不是…...
DroneXtract:一款针对无人机的网络安全数字取证工具
关于DroneXtract DroneXtract是一款使用 Golang 开发的适用于DJI无人机的综合数字取证套件,该工具可用于分析无人机传感器值和遥测数据、可视化无人机飞行地图、审计威胁活动以及提取多种文件格式中的相关数据。 功能介绍 DroneXtract 具有四个用于无人机取证和审…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
PHP 8.5 即将发布:管道操作符、强力调试
前不久,PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5!作为 PHP 语言的又一次重要迭代,PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是,借助强大的本地开发环境 ServBay&am…...

