Effective C++ 规则50:了解 new 和 delete 的合理替换时机
1、背景
在 C++ 中,new 和 delete 是动态分配内存的核心操作符。然而,直接使用它们有时会增加程序的复杂性,甚至导致内存泄漏和其他问题。因此,了解何时替换 new 和 delete 并选择更适合的内存管理策略,是编写高效、健壮 C++ 程序的关键。直接使用 new 和 delete 存在以下潜在问题:
- 内存泄漏: 如果忘记调用 delete 释放内存,就会导致内存泄漏。
- 异常安全性: 在异常发生时,可能导致内存无法正确释放。
- 复杂性: 手动管理内存使代码变得更难维护和阅读。
- 性能问题: 默认的全局 new 和 delete 可能不适合特定场景,例如需要高效的内存池。
- 无法跟踪分配: 默认 new 和 delete 无法提供关于内存分配的额外信息(如分配大小或位置)。
2、替换 new 和 delete 的常用方法
2.1 、使用智能指针代替原始指针
现代 C++ 提供了智能指针(std::unique_ptr 和 std::shared_ptr),它们能够自动管理内存,避免手动调用 delete。
#include <memory>
#include <iostream>class Widget {
public:Widget() { std::cout << "Widget constructed" << std::endl; }~Widget() { std::cout << "Widget destroyed" << std::endl; }
};int main() {std::unique_ptr<Widget> w = std::make_unique<Widget>();// 无需手动调用 deletereturn 0;
}
这样做可以避免内存泄漏,提供异常安全性
2.2、定制全局 new 和 delete
在某些场景中,需要替换全局 new 和 delete 以提供自定义的内存分配行为。
#include <cstdlib>
#include <iostream>void* operator new(size_t size) {std::cout << "Custom new: Allocating " << size << " bytes" << std::endl;return std::malloc(size);
}void operator delete(void* ptr) noexcept {std::cout << "Custom delete: Freeing memory" << std::endl;std::free(ptr);
}int main() {int* p = new int;delete p;return 0;
}
- 优点,可以跟踪内存分配和释放,可优化内存分配以满足特定需求。
2.3、为特定类重载 new 和 delete
对于某些类,可以提供自定义的 new 和 delete,以优化其内存管理。
#include <iostream>
#include <cstdlib>class Widget {
public:static void* operator new(size_t size) {std::cout << "Widget custom new: Allocating " << size << " bytes" << std::endl;return std::malloc(size);}static void operator delete(void* ptr) noexcept {std::cout << "Widget custom delete: Freeing memory" << std::endl;std::free(ptr);}
};int main() {Widget* w = new Widget;delete w;return 0;
}
- 优点,针对特定类优化内存分配,可实现类级别的内存跟踪和调试。
2.4、使用内存池
在需要频繁分配和释放小对象的场景下,使用内存池可以显著提升性能。
#include <vector>
#include <iostream>class MemoryPool {
public:MemoryPool(size_t objectSize, size_t poolSize): m_objectSize(objectSize), m_poolSize(poolSize) {m_pool.reserve(m_poolSize);for (size_t i = 0; i < m_poolSize; ++i) {m_pool.push_back(std::malloc(m_objectSize));}}~MemoryPool() {for (void* ptr : m_pool) {std::free(ptr);}}void* allocate() {if (m_pool.empty()) {return std::malloc(m_objectSize);} else {void* ptr = m_pool.back();m_pool.pop_back();return ptr;}}void deallocate(void* ptr) {m_pool.push_back(ptr);}private:size_t m_objectSize;size_t m_poolSize;std::vector<void*> m_pool;
};int main() {MemoryPool pool(sizeof(int), 10);int* p = static_cast<int*>(pool.allocate());pool.deallocate(p);return 0;
}
- 优点,显著降低小对象的分配和释放开销,避免频繁调用全局的 new 和 delete
相关文章:
Effective C++ 规则50:了解 new 和 delete 的合理替换时机
1、背景 在 C 中,new 和 delete 是动态分配内存的核心操作符。然而,直接使用它们有时会增加程序的复杂性,甚至导致内存泄漏和其他问题。因此,了解何时替换 new 和 delete 并选择更适合的内存管理策略,是编写高效、健壮…...

Alfresco Content Services dockerCompose自动化部署详尽操作
Alfresco Content Services docker社区部署文档 Alfresco Content Services简介 Alfresco Content Services(简称ACS)是一款功能完备的企业内容管理(ECM)解决方案,主要面向那些对企业级内容管理有高要求的组织。具体…...
学习第七十六行
提高github下载速度方法 1.github转码云 2.https://github.com.cnpmjs.org com后面加东西 对于面试笔试,最好方法刷力扣,1000题包进大厂的...

YOLOv11改进,YOLOv11检测头融合DynamicHead,并添加小目标检测层(四头检测),适合目标检测、分割等任务
摘要 作者提出一种新的检测头,称为“动态头”,旨在将尺度感知、空间感知和任务感知统一在一起。如果我们将骨干网络的输出(即检测头的输入)视为一个三维张量,其维度为级别 空间 通道,这样的统一检测头可以看作是一个注意力学习问题,直观的解决方案是对该张量进行全自…...

一个基于Python+Appium的手机自动化项目~~
本项目通过PythonAppium实现了抖音手机店铺的自动化询价,可以直接输出excel,并带有详细的LOG输出。 1.excel输出效果: 2. LOG效果: 具体文件内容见GitCode: 项目首页 - douyingoods:一个基于Pythonappium的手机自动化项目,实现了…...

【后端开发】字节跳动青训营之性能分析工具pprof
性能分析工具pprof 一、测试程序介绍二、pprof工具安装与使用2.1 pprof工具安装2.2 pprof工具使用 资料链接: 项目代码链接实验指南pprof使用指南 一、测试程序介绍 package mainimport ("log""net/http"_ "net/http/pprof" // 自…...

Linux:线程池和单例模式
一、普通线程池 1.1 线程池概念 线程池:一种线程使用模式。线程过多会带来调度开销,进而影响缓存局部性和整体性能。而线程池维护着多个线程,等待着监督管理者分配可并发执行的任务。这避免了在处理短时间任务时创建与销毁线程的代价&…...
使用iis服务器模拟本地资源服务器unityaddressables热更新出错记录
editor中设置了using exculexing 模拟远程加载addressable可以实现资源热更新,build后的软件却没有成功。 iis服务器中mime中需要设置bundle的文件扩展名,时editor成功,build后失败 原因没有设置hash的扩展名,设置后editor和buil…...
TikTok广告投放优化策略:提升ROI的核心技巧
在短许多品牌和商家纷纷投入广告营销,争夺这片潜力巨大的市场。然而,在激烈的竞争环境中,如何精准有效地投放广告,优化广告效果,实现更高的投资回报率(ROI)成为了广告主关注的核心。 一. 精准受…...
Hash表
哈希表存储结构(开放寻址法,拉链法)字符串哈希方式(添加、查找h(x)) 常见从0~10^9映射到0~10^5就要对10^5取mod(取模一般要质数最好)但是可能会有冲突 1.拉链法:O(1),每…...
题解:P10972 I-Country
题目传送门 思路 因为占据的连通块的左端点先递减、后递增,右端点先递增、后递减,所以设 f i , j , l , r , x ( 0 / 1 ) , y ( 0 / 1 ) f_{i,j,l,r,x(0/1),y(0/1)} fi,j,l,r,x(0/1),y(0/1) 为前 i i i 行中,选择 j j j 个方格&#x…...

linux常用加固方式
目录 一.系统加固 二.ssh加固 三.换个隐蔽的端口 四.防火墙配置 五.用户权限管理 六.暴力破解防护 七.病毒防护 八.磁盘加密 九.双因素认证2FA 十.日志监控 十一.精简服务 一.系统加固 第一步:打好系统补丁 sudo apt update && sudo apt upgra…...
笔灵ai写作技术浅析(二):自然语言处理
一、词法分析(Lexical Analysis) 1.1 概述 词法分析是NLP的第一步,主要任务是将连续的文本分割成有意义的单元(词或词组),并对这些单元进行标注,如词性标注(POS tagging)。词法分析的质量直接影响后续的句法分析和语义理解。 1.2 技术细节 1.分词(Tokenization)…...
PyCharm介绍
PyCharm的官网是https://www.jetbrains.com/pycharm/。 以下是在PyCharm官网下载和安装软件的步骤: 下载步骤 打开浏览器,访问PyCharm的官网https://www.jetbrains.com/pycharm/。在官网首页,点击“Download”按钮进入下载页面。选择适合自…...

深度解析:基于Vue 3与Element Plus的学校管理系统技术实现
一、项目架构分析 1.1 技术栈全景 核心框架:Vue 3 TypeScript UI组件库:Element Plus(含图标动态注册) 状态管理:Pinia(用户状态持久化) 路由方案:Vue Router(动态路…...

Python从0到100(八十五):神经网络-使用迁移学习完成猫狗分类
前言: 零基础学Python:Python从0到100最新最全教程。 想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、 计算机视觉、机器学习、神经网络以及人工智能…...
苍穹外卖 项目记录 day09 历史订单
文章目录 查询历史订单查询订单详情取消订单再来一单 查询历史订单 分页查询历史订单可以根据订单状态查询展示订单数据时,需要展示的数据包括:下单时间、订单状态、订单金额、订单明细(商品名称、图片) #OrderController/*** 历…...

记录 | 基于Docker Desktop的MaxKB安装
目录 前言一、MaxKBStep 1Step2 二、运行MaxKB更新时间 前言 参考文章:如何利用智谱全模态免费模型,生成大家都喜欢的图、文、视并茂的文章! MaxKB的Github下载地址 参考视频:【2025最新MaxKB教程】10分钟学会一键部署本地私人专属…...
WordPress web-directory-free插件存在本地文件包含导致任意文件读取漏洞(CVE-2024-3673)
免责声明: 本文旨在提供有关特定漏洞的深入信息,帮助用户充分了解潜在的安全风险。发布此信息的目的在于提升网络安全意识和推动技术进步,未经授权访问系统、网络或应用程序,可能会导致法律责任或严重后果。因此,作者不对读者基于本文内容所采取的任何行为承担责任。读者在…...

LLM:BERT or BART 之BERT
文章目录 前言一、BERT1. Decoder-only2. Encoder-only3. Use of Bidirectional Context4. Masked Language Model (MLM)5. Next Sentence Prediction (NSP)6. Fine-tune1、情感分析2、句对分析3、命名实体识别(NER) 7. BERT总结 总结 前言 NLP选手对这…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...

【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅
目录 前言 操作系统与驱动程序 是什么,为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中,我们在使用电子设备时,我们所输入执行的每一条指令最终大多都会作用到硬件上,比如下载一款软件最终会下载到硬盘上&am…...
LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用
中达瑞和自2005年成立以来,一直在光谱成像领域深度钻研和发展,始终致力于研发高性能、高可靠性的光谱成像相机,为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10pip3.10) 一:前言二:安装编译依赖二:安装Python3.10三:安装PIP3.10四:安装Paddlepaddle基础框架4.1…...

使用SSE解决获取状态不一致问题
使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件,这个上传文件是整体功能的一部分,文件在上传的过程中…...