当前位置: 首页 > news >正文

Hash表

哈希表存储结构(开放寻址法,拉链法)字符串哈希方式(添加、查找h(x))

常见从0~10^9映射到0~10^5就要对10^5取mod(取模一般要质数最好)但是可能会有冲突

1.拉链法:O(1),每个节点拉一条链增加数

#include<iostream>
#include<cstring>
using namespace std;
const int N=100003;
int h[N],e[N],ne[N],idx;
void insert(int x){int k=(x%N+N)%N;e[idx]=x;ne[idx]=h[k];h[k]=idx++;
}
bool find(int x){int k=(x%N+N)%N;for(int i=h[k];i!=-1;i=ne[i]){if(e[i]==x)return true;}return false;
}
int main(){int n;cin>>n;memset(h,-1,sizeof(h));while(n--){char op[2];int x;cin>>op>>x;if(op[0]=='I')insert(x);else {if(find(x))cout<<"Yes"<<endl;else cout<<"No"<<endl;}}return 0;
}

2.开放寻址法:开放寻(厕)法

#include<iostream>
#include<cstring>
using namespace std;
const int N=200003,null=0x3f3f3f3f;
int h[N];
int find(int x ){int k= (x%N+N)%N;while(h[k]!=null&&h[k]!=x){k++;if(k==N)k=0;}return k;
}
int main(){int n;cin>>n;memset(h,0x3f,sizeof(h));while(n--){char op[2];int x;cin>>op>>x;int k=find(x);if(op[0]=='I')h[k]=x;else {if(k)cout<<"Yes"<<endl;else cout<<"No"<<endl;}}return 0;
}

字符串前缀哈希方式:映射成从1开始取p=131   13331  2^64三个

#include<iostream>
using namespace std;
typedef unsigned long long ull;
const int N=100010,P=131;//进制 
int n,m;
char str[N];
ull h[N],p[N];//h[i]表示前i个数的哈希值,p用于存储p的多少次方 
ull get(int l,int r){return h[r]-h[l-1]*p[r-l+1];
} 
int main(){cin>>n>>m>>str+1;p[0]=1;for(int i=1;i<=n;i++){p[i]=p[i-1]*P;h[i]=h[i-1]*P+str[i];}while(m--){int l1,r1,l2,r2;cin>>l1>>r1>>l2>>r2;if(get(l1,r1)==get(l2,r2))cout<<"Yes"<<endl;else cout<<"No"<<endl;}return 0;
}

相关文章:

Hash表

哈希表存储结构&#xff08;开放寻址法&#xff0c;拉链法&#xff09;字符串哈希方式&#xff08;添加、查找h(x)&#xff09; 常见从0~10^9映射到0~10^5就要对10^5取mod&#xff08;取模一般要质数最好&#xff09;但是可能会有冲突 1.拉链法&#xff1a;O(1)&#xff0c;每…...

题解:P10972 I-Country

题目传送门 思路 因为占据的连通块的左端点先递减、后递增&#xff0c;右端点先递增、后递减&#xff0c;所以设 f i , j , l , r , x ( 0 / 1 ) , y ( 0 / 1 ) f_{i,j,l,r,x(0/1),y(0/1)} fi,j,l,r,x(0/1),y(0/1)​ 为前 i i i 行中&#xff0c;选择 j j j 个方格&#x…...

linux常用加固方式

目录 一.系统加固 二.ssh加固 三.换个隐蔽的端口 四.防火墙配置 五.用户权限管理 六.暴力破解防护 七.病毒防护 八.磁盘加密 九.双因素认证2FA 十.日志监控 十一.精简服务 一.系统加固 第一步&#xff1a;打好系统补丁 sudo apt update && sudo apt upgra…...

笔灵ai写作技术浅析(二):自然语言处理

一、词法分析(Lexical Analysis) 1.1 概述 词法分析是NLP的第一步,主要任务是将连续的文本分割成有意义的单元(词或词组),并对这些单元进行标注,如词性标注(POS tagging)。词法分析的质量直接影响后续的句法分析和语义理解。 1.2 技术细节 1.分词(Tokenization)…...

PyCharm介绍

PyCharm的官网是https://www.jetbrains.com/pycharm/。 以下是在PyCharm官网下载和安装软件的步骤&#xff1a; 下载步骤 打开浏览器&#xff0c;访问PyCharm的官网https://www.jetbrains.com/pycharm/。在官网首页&#xff0c;点击“Download”按钮进入下载页面。选择适合自…...

深度解析:基于Vue 3与Element Plus的学校管理系统技术实现

一、项目架构分析 1.1 技术栈全景 核心框架&#xff1a;Vue 3 TypeScript UI组件库&#xff1a;Element Plus&#xff08;含图标动态注册&#xff09; 状态管理&#xff1a;Pinia&#xff08;用户状态持久化&#xff09; 路由方案&#xff1a;Vue Router&#xff08;动态路…...

Python从0到100(八十五):神经网络-使用迁移学习完成猫狗分类

前言: 零基础学Python:Python从0到100最新最全教程。 想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、 计算机视觉、机器学习、神经网络以及人工智能…...

苍穹外卖 项目记录 day09 历史订单

文章目录 查询历史订单查询订单详情取消订单再来一单 查询历史订单 分页查询历史订单可以根据订单状态查询展示订单数据时&#xff0c;需要展示的数据包括&#xff1a;下单时间、订单状态、订单金额、订单明细&#xff08;商品名称、图片&#xff09; #OrderController/*** 历…...

记录 | 基于Docker Desktop的MaxKB安装

目录 前言一、MaxKBStep 1Step2 二、运行MaxKB更新时间 前言 参考文章&#xff1a;如何利用智谱全模态免费模型&#xff0c;生成大家都喜欢的图、文、视并茂的文章&#xff01; MaxKB的Github下载地址 参考视频&#xff1a;【2025最新MaxKB教程】10分钟学会一键部署本地私人专属…...

WordPress web-directory-free插件存在本地文件包含导致任意文件读取漏洞(CVE-2024-3673)

免责声明: 本文旨在提供有关特定漏洞的深入信息,帮助用户充分了解潜在的安全风险。发布此信息的目的在于提升网络安全意识和推动技术进步,未经授权访问系统、网络或应用程序,可能会导致法律责任或严重后果。因此,作者不对读者基于本文内容所采取的任何行为承担责任。读者在…...

LLM:BERT or BART 之BERT

文章目录 前言一、BERT1. Decoder-only2. Encoder-only3. Use of Bidirectional Context4. Masked Language Model (MLM)5. Next Sentence Prediction (NSP)6. Fine-tune1、情感分析2、句对分析3、命名实体识别&#xff08;NER&#xff09; 7. BERT总结 总结 前言 NLP选手对这…...

EtherCAT主站IGH-- 18 -- IGH之fsm_mbox_gateway.h/c文件解析

EtherCAT主站IGH-- 18 -- IGH之fsm_mbox_gateway.h/c文件解析 0 预览一 该文件功能`fsm_mbox_gateway.c` 文件功能函数预览二 函数功能介绍`fsm_mbox_gateway.c` 中主要函数的作用1. `ec_fsm_mbg_init`2. `ec_fsm_mbg_clear`3. `ec_fsm_mbg_transfer`4. `ec_fsm_mbg_exec`5. `e…...

深入探讨防抖函数中的 this 上下文

深入剖析防抖函数中的 this 上下文 最近我在研究防抖函数实现的时候&#xff0c;发现一个耗费脑子的问题&#xff0c;出现了令我困惑的问题。接下来&#xff0c;我将通过代码示例&#xff0c;深入探究这些现象背后的原理。 示例代码 function debounce(fn, delay) {let time…...

【AI论文】魔鬼在细节:关于在训练专用混合专家模型时实现负载均衡损失

摘要&#xff1a;本文重新审视了在训练混合专家&#xff08;Mixture-of-Experts, MoEs&#xff09;模型时负载均衡损失&#xff08;Load-Balancing Loss, LBL&#xff09;的实现。具体来说&#xff0c;MoEs的LBL定义为N_E乘以从1到N_E的所有专家i的频率f_i与门控得分平均值p_i的…...

Gurobi基础语法之addVar 和 addVars

addVar 和 addVars作为 Gurobi模型对象中的方法&#xff0c;常常用来生成变量&#xff0c;本文介绍了Python中的这两个接口的使用 addVar addVar(lb0.0, ubfloat(inf), obj0.0, vtypeGRB.CONTINUOUS, name, columnNone) lb 和 ub让变量在生成的时候就有下界和上届&#xff0c…...

C语言学习阶段性总结(五)---函数

函数构成五要素&#xff1a; 1、返回值类型 2、函数名 3、参数列表&#xff08;输入&#xff09; 4、函数体 &#xff08;算法&#xff09; 5、返回值 &#xff08;输出&#xff09; 返回值类型 函数名 (参数列表) { 函数体&#xff1b; return 返回值&#xff1b; } void 类型…...

K8S 快速实战

K8S 核心架构原理: 我们已经知道了 K8S 的核心功能:自动化运维管理多个容器化程序。那么 K8S 怎么做到的呢?这里,我们从宏观架构上来学习 K8S 的设计思想。首先看下图: K8S 是属于主从设备模型(Master-Slave 架构),即有 Master 节点负责核心的调度、管理和运维,Slave…...

java后端之事务管理

Transactional注解&#xff1a;作用于业务层的方法、类、接口上&#xff0c;将当前方法交给spring进行事务管理&#xff0c;执行前开启事务&#xff0c;成功执行则提交事务&#xff0c;执行异常回滚事务 spring事务管理日志&#xff1a; 默认情况下&#xff0c;只有出现Runti…...

【Redis】缓存+分布式锁

目录 缓存 Redis最主要的使用场景就是作为缓存 缓存的更新策略&#xff1a; 1.定期生成 2.实时生成 面试重点&#xff1a; 缓存预热&#xff08;Cache preheating&#xff09;&#xff1a; 缓存穿透&#xff08;Cache penetration&#xff09; 缓存雪崩 (Cache avalan…...

二分查找题目:寻找两个正序数组的中位数

文章目录 题目标题和出处难度题目描述要求示例数据范围 解法一思路和算法代码复杂度分析 解法二思路和算法代码复杂度分析 题目 标题和出处 标题&#xff1a;寻找两个正序数组的中位数 出处&#xff1a;4. 寻找两个正序数组的中位数 难度 8 级 题目描述 要求 给定两个大…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)

CSI-2 协议详细解析 (一&#xff09; 1. CSI-2层定义&#xff08;CSI-2 Layer Definitions&#xff09; 分层结构 &#xff1a;CSI-2协议分为6层&#xff1a; 物理层&#xff08;PHY Layer&#xff09; &#xff1a; 定义电气特性、时钟机制和传输介质&#xff08;导线&#…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...