Qwen2-VL:在任何分辨率下增强视觉语言模型对世界的感知 (大型视觉模型 核心技术 分享)
摘要
我们推出了Qwen2-VL系列,这是对之前Qwen-VL模型的高级升级,重新定义了视觉处理中的常规预设分辨率方法。Qwen2-VL引入了Naive Dynamic Resolution机制,使模型能够动态地将不同分辨率的图像转换为不同的视觉令牌数量。这种方法允许模型生成更高效和准确的视觉表示,紧密契合人类感知过程。该模型还整合了Multimodal Rotary Position Embedding (M-RoPE),促进文本、图像和视频之间位置信息的有效融合。我们采用统一的方法来处理图像和视频,增强模型的视觉感知能力。为了探索大型多模态模型的潜力,Qwen2-VL研究了大型视觉语言模型(LVLM)的规模定律。通过扩大模型大小——版本包括2B、8B和72B参数——以及训练数据量,Qwen2-VL系列实现了高度竞争性的性能。值得注意的是,Qwen2-VL-72B模型在各种多模态基准上与领先模型如GPT-4o和Claude3.5-Sonnet的结果相当,并且优于其他通用模型。代码可在https://github.com/QwenLM/Qwen2-VL中获取。
1.介绍
在人工智能领域,大型视觉语言模型(LVLM)代表了一次重大飞跃,建立在传统大型语言模型的强大文本处理能力之上。这些先进的模型现在涵盖了对更广泛数据集的解释和分析的能力,包括图像、音频和视频。这种能力的扩展已将LVLM转变为解决各种现实世界挑战不可或缺的
相关文章:
Qwen2-VL:在任何分辨率下增强视觉语言模型对世界的感知 (大型视觉模型 核心技术 分享)
摘要 我们推出了Qwen2-VL系列,这是对之前Qwen-VL模型的高级升级,重新定义了视觉处理中的常规预设分辨率方法。Qwen2-VL引入了Naive Dynamic Resolution机制,使模型能够动态地将不同分辨率的图像转换为不同的视觉令牌数量。这种方法允许模型生成更高效和准确的视觉表示,紧密…...
Docker——入门介绍
目录 1.初识 Docker1.1.什么是 Docker1.1.1.应用部署的环境问题1.1.2.Docker 解决依赖兼容问题1.1.3.Docker 解决操作系统环境差异1.1.4.小结 1.2.Docker 和虚拟机的区别1.3.Docker 架构1.3.1.镜像和容器1.3.2.DockerHub1.3.3.Docker 架构1.3.4.小结 1.4.安装 Docker1.4.1.概述…...
02数组+字符串+滑动窗口+前缀和与差分+双指针(D2_字符串(D2_刷题练习))
目录 1. 最长公共前缀 1.1. 题目描述 1.2. 解题方案 方案一:纵向对比 方案二:横向对比 方案三:最值对比 方案四:分治 方案五:二分 1.3. 知识归纳 2. 左旋转字符串(简单) 2.1. 题目描述…...
【redis进阶】集群 (Cluster)
目录 一、基本概念 二、数据分片算法 2.1 哈希求余 2.2 一致性哈希算法 3.3 哈希槽分区算法 (Redis 使用) 三、集群搭建 (基于 docker) 3.1 创建目录和配置 3.2 编写 docker-compose.yml 3.3 启动容器 3.4 构建集群 四、主节点宕机 4.1 处理流程 五、集群扩容 六、集群缩容 (选…...
Python案例--100到200的素数
一、问题描述 素数(Prime Number)是指在大于1的自然数中,除了1和它本身以外不再有其他因数的数。判断一个数是否为素数是计算机科学和数学中的一个经典问题。本实例的目标是找出101到200之间的所有素数,并统计它们的数量。 二、…...
C语言,无法正常释放char*的空间
问题描述 #include <stdio.h> #include <stdio.h>const int STRSIZR 10;int main() {char *str (char *)malloc(STRSIZR*sizeof(char));str "string";printf("%s\n", str);free(str); } 乍一看,这块代码没有什么问题。直接书写…...
重回C语言之老兵重装上阵(十五)C语言错误处理
C语言错误处理 在C语言中,错误处理是非常重要的一部分。C语言没有像高级语言(例如Python、Java)那样内建的异常处理机制(如try-catch),但它提供了几种方法来捕捉和处理错误。正确的错误处理可以提高程序的稳…...
基于微信的课堂助手小程序设计与实现(LW+源码+讲解)
专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…...
Effective C++ 规则50:了解 new 和 delete 的合理替换时机
1、背景 在 C 中,new 和 delete 是动态分配内存的核心操作符。然而,直接使用它们有时会增加程序的复杂性,甚至导致内存泄漏和其他问题。因此,了解何时替换 new 和 delete 并选择更适合的内存管理策略,是编写高效、健壮…...
Alfresco Content Services dockerCompose自动化部署详尽操作
Alfresco Content Services docker社区部署文档 Alfresco Content Services简介 Alfresco Content Services(简称ACS)是一款功能完备的企业内容管理(ECM)解决方案,主要面向那些对企业级内容管理有高要求的组织。具体…...
学习第七十六行
提高github下载速度方法 1.github转码云 2.https://github.com.cnpmjs.org com后面加东西 对于面试笔试,最好方法刷力扣,1000题包进大厂的...
YOLOv11改进,YOLOv11检测头融合DynamicHead,并添加小目标检测层(四头检测),适合目标检测、分割等任务
摘要 作者提出一种新的检测头,称为“动态头”,旨在将尺度感知、空间感知和任务感知统一在一起。如果我们将骨干网络的输出(即检测头的输入)视为一个三维张量,其维度为级别 空间 通道,这样的统一检测头可以看作是一个注意力学习问题,直观的解决方案是对该张量进行全自…...
一个基于Python+Appium的手机自动化项目~~
本项目通过PythonAppium实现了抖音手机店铺的自动化询价,可以直接输出excel,并带有详细的LOG输出。 1.excel输出效果: 2. LOG效果: 具体文件内容见GitCode: 项目首页 - douyingoods:一个基于Pythonappium的手机自动化项目,实现了…...
【后端开发】字节跳动青训营之性能分析工具pprof
性能分析工具pprof 一、测试程序介绍二、pprof工具安装与使用2.1 pprof工具安装2.2 pprof工具使用 资料链接: 项目代码链接实验指南pprof使用指南 一、测试程序介绍 package mainimport ("log""net/http"_ "net/http/pprof" // 自…...
Linux:线程池和单例模式
一、普通线程池 1.1 线程池概念 线程池:一种线程使用模式。线程过多会带来调度开销,进而影响缓存局部性和整体性能。而线程池维护着多个线程,等待着监督管理者分配可并发执行的任务。这避免了在处理短时间任务时创建与销毁线程的代价&…...
使用iis服务器模拟本地资源服务器unityaddressables热更新出错记录
editor中设置了using exculexing 模拟远程加载addressable可以实现资源热更新,build后的软件却没有成功。 iis服务器中mime中需要设置bundle的文件扩展名,时editor成功,build后失败 原因没有设置hash的扩展名,设置后editor和buil…...
TikTok广告投放优化策略:提升ROI的核心技巧
在短许多品牌和商家纷纷投入广告营销,争夺这片潜力巨大的市场。然而,在激烈的竞争环境中,如何精准有效地投放广告,优化广告效果,实现更高的投资回报率(ROI)成为了广告主关注的核心。 一. 精准受…...
Hash表
哈希表存储结构(开放寻址法,拉链法)字符串哈希方式(添加、查找h(x)) 常见从0~10^9映射到0~10^5就要对10^5取mod(取模一般要质数最好)但是可能会有冲突 1.拉链法:O(1),每…...
题解:P10972 I-Country
题目传送门 思路 因为占据的连通块的左端点先递减、后递增,右端点先递增、后递减,所以设 f i , j , l , r , x ( 0 / 1 ) , y ( 0 / 1 ) f_{i,j,l,r,x(0/1),y(0/1)} fi,j,l,r,x(0/1),y(0/1) 为前 i i i 行中,选择 j j j 个方格&#x…...
linux常用加固方式
目录 一.系统加固 二.ssh加固 三.换个隐蔽的端口 四.防火墙配置 五.用户权限管理 六.暴力破解防护 七.病毒防护 八.磁盘加密 九.双因素认证2FA 十.日志监控 十一.精简服务 一.系统加固 第一步:打好系统补丁 sudo apt update && sudo apt upgra…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案
问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...
转转集团旗下首家二手多品类循环仓店“超级转转”开业
6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...
Python实现prophet 理论及参数优化
文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...
基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
