当前位置: 首页 > news >正文

农业信息化的基本框架

农业信息化的主要研究内容

基于作物模型的相关研究
  • 作物生长模拟模型以及模型评价、模型的应用
  • 作物模型应用,包括:作物生态系统过程、生产管理措施、区域作物产量评估与气候变化对产量影响预测、基于作物模型的决策支持系统
数据挖掘、知识工程及应用、管理与决策信息系统
  • 数据挖掘技术利用已有的知识去发现新的知识,为农业生产做决策支持。
农业企业信息化
  • 种植、养殖业生产过程信息化
  • 农产品加工
农业供应链
农业供应-->生产-->销售

相关文章:

农业信息化的基本框架

农业信息化的主要研究内容 基于作物模型的相关研究 作物生长模拟模型以及模型评价、模型的应用作物模型应用,包括:作物生态系统过程、生产管理措施、区域作物产量评估与气候变化对产量影响预测、基于作物模型的决策支持系统 数据挖掘、知识工程及应用、管…...

OpenAI的真正对手?DeepSeek-R1如何用强化学习重构LLM能力边界——DeepSeek-R1论文精读

2025年1月20日,DeepSeek-R1 发布,并同步开源模型权重。截至目前,DeepSeek 发布的 iOS 应用甚至超越了 ChatGPT 的官方应用,直接登顶 AppStore。 DeepSeek-R1 一经发布,各种资讯已经铺天盖地,那就让我们一起…...

Vue 3 中的父子组件传值:详细示例与解析

在 Vue 3 中,父子组件之间的数据传递是一个常见的需求。父组件可以通过 props 将数据传递给子组件,而子组件可以通过 defineProps 接收这些数据。本文将详细介绍父子组件传值的使用方法,并通过优化后的代码示例演示如何实现。 1. 父子组件传值…...

回顾2024,展望2025

项目 LMD performance phase2 今年修修补补,设计和做了很多item,有时候自己都数不清做了什么大大小小的item,但是for LMD performance phase2的go-live确实是最大也是最难的了,无论什么系统,只要用的人多了&#xff…...

【Python实现机器遗忘算法】复现2021年顶会 AAAI算法Amnesiac Unlearning

【Python实现机器遗忘算法】复现2021年顶会 AAAI算法Amnesiac Unlearning 1 算法原理 论文:Graves, L., Nagisetty, V., & Ganesh, V. (2021). Amnesiac machine learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, 115…...

Vue 3 30天精进之旅:Day 03 - Vue实例

引言 在前两天的学习中,我们成功搭建了Vue.js的开发环境,并创建了我们的第一个Vue项目。今天,我们将深入了解Vue的核心概念之一——Vue实例。通过学习Vue实例,你将理解Vue的基础架构,掌握数据绑定、模板语法和指令的使…...

【ArcGIS微课1000例】0141:提取多波段影像中的单个波段

文章目录 一、波段提取函数二、加载单波段导出问题描述:如下图所示,img格式的时序NDVI数据有24个波段。现在需要提取某一个波段,该怎样操作? 一、波段提取函数 首先加载多波段数据。点击【窗口】→【影像分析】。 选择需要处理的多波段影像,点击下方的【添加函数】。 在多…...

【第九天】零基础入门刷题Python-算法篇-数据结构与算法的介绍-六种常见的图论算法(持续更新)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、Python数据结构与算法的详细介绍1.Python中的常用的图论算法2. 图论算法3.详细的图论算法1)深度优先搜索(DFS)2&#xf…...

落地 轮廓匹配

个人理解为将一幅不规则的图形,通过最轮廓发现,最大轮廓匹配来确定图像的位置,再通过pt将不规则的图像放在规定的矩形里面,在通过透视变换将不规则的图形放进规则的图像中。 1. findHomography 函数 • Mat h findHomography(s…...

【漫话机器学习系列】064.梯度下降小口诀(Gradient Descent rule of thume)

梯度下降小口诀 为了帮助记忆梯度下降的核心原理和关键注意事项,可以用以下简单口诀来总结: 1. 基本原理 损失递减,梯度为引:目标是让损失函数减少,依靠梯度指引方向。负梯度,反向最短:沿着负…...

JAVA(SpringBoot)集成Kafka实现消息发送和接收。

SpringBoot集成Kafka实现消息发送和接收。 一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者 君子之学贵一,一则明,明则有功。 一、Kafka 简介 Kafka 是由 Apache 软件基金会开发的一个开源流处理平台,最初由 Link…...

AI刷题-蛋糕工厂产能规划、优质章节的连续选择

挑两个简单的写写 目录 一、蛋糕工厂产能规划 问题描述 输入格式 输出格式 解题思路: 问题理解 数据结构选择 算法步骤 关键点 最终代码: 运行结果:​编辑 二、优质章节的连续选择 问题描述 输入格式 输出格式 解题思路&a…...

在线可编辑Excel

1. Handsontable 特点: 提供了类似 Excel 的表格编辑体验,包括单元格样式、公式计算、数据验证等功能。 支持多种插件,如筛选、排序、合并单元格等。 轻量级且易于集成到现有项目中。 具备强大的自定义能力,可以调整外观和行为…...

什么是词嵌入?Word2Vec、GloVe 与 FastText 的区别

自然语言处理(NLP)领域的核心问题之一,是如何将人类的语言转换成计算机可以理解的数值形式,而词嵌入(Word Embedding)正是为了解决这个问题的重要技术。本文将详细讲解词嵌入的概念及其经典模型(Word2Vec、GloVe 和 FastText)的原理与区别。 1. 什么是词嵌入(Word Em…...

WPS数据分析000010

基于数据透视表的内容 一、排序 手动调动 二、筛选 三、值显示方式 四、值汇总依据 五、布局和选项 不显示分类汇总 合并居中带标签的单元格 空单元格显示 六、显示报表筛选页...

Qt中QVariant的使用

1.使用QVariant实现不同类型数据的相加 方法:通过type函数返回数值的类型,然后通过setValue来构造一个QVariant类型的返回值。 函数: QVariant mainPage::dataPlus(QVariant a, QVariant b) {QVariant ret;if ((a.type() QVariant::Int) &a…...

Avalonia UI MVVM DataTemplate里绑定Command

Avalonia 模板里面绑定ViewModel跟WPF写法有些不同。需要单独绑定Command. WPF里面可以直接按照下面的方法绑定DataContext. <Button Content"Button" Command"{Binding DataContext.ClickCommand, RelativeSource{RelativeSource AncestorType{x:Type User…...

动态规划DP 数字三角型模型 最低通行费用(题目详解+C++代码完整实现)

最低通行费用 原题链接 AcWing 1018. 最低同行费用 题目描述 一个商人穿过一个 NN的正方形的网格&#xff0c;去参加一个非常重要的商务活动。 他要从网格的左上角进&#xff0c;右下角出。每穿越中间 1个小方格&#xff0c;都要花费 1个单位时间。商人必须在 (2N−1)个单位…...

deepseek R1的确不错,特别是深度思考模式

deepseek R1的确不错&#xff0c;特别是深度思考模式&#xff0c;每次都能自我反省改进。比如我让 它写文案&#xff1a; 【赛博朋克版程序员新春密码——2025我们来破局】 亲爱的代码骑士们&#xff1a; 当CtrlS的肌肉记忆遇上抢票插件&#xff0c;当Spring Boot的…...

Linux 常用命令 - sort 【对文件内容进行排序】

简介 sort 命令源于英文单词 “sort”&#xff0c;表示排序。其主要功能是对文本文件中的行进行排序。它可以根据字母、数字、特定字段等不同的标准进行排序。sort 通过逐行读取文件&#xff08;没有指定文件或指定文件为 - 时读取标准输入&#xff09;内容&#xff0c;并按照…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中&#xff0c;提示一个依赖外部头文件的cpp源文件需要同步&#xff0c;点…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

10-Oracle 23 ai Vector Search 概述和参数

一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI&#xff0c;使用客户端或是内部自己搭建集成大模型的终端&#xff0c;加速与大型语言模型&#xff08;LLM&#xff09;的结合&#xff0c;同时使用检索增强生成&#xff08;Retrieval Augmented Generation &#…...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

JS设计模式(4):观察者模式

JS设计模式(4):观察者模式 一、引入 在开发中&#xff0c;我们经常会遇到这样的场景&#xff1a;一个对象的状态变化需要自动通知其他对象&#xff0c;比如&#xff1a; 电商平台中&#xff0c;商品库存变化时需要通知所有订阅该商品的用户&#xff1b;新闻网站中&#xff0…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...