如何使用DeepSeek R1
以下是如何使用DeepSeek R1的详细步骤:
### 一、注册DeepSeek账户
1. **访问官方网站**:
- 打开浏览器,访问[chat.deepseek.com](http://chat.deepseek.com)。
2. **注册账户**:
- 使用电子邮件、Google账户或+86手机号码在DeepSeek官方网站上注册一个账户。
### 二、选择合适的模型
1. **登录账户**:
- 使用注册的账户登录DeepSeek平台。
2. **选择模型**:
- 根据需求选择合适的DeepSeek模型。例如,DeepSeek Chat适用于一般对话,而DeepSeek Coder则专注于编程任务,并有多个版本可供选择,参数从1B到236B不等。
### 三、通过网页界面访问模型
1. **一般对话**:
- 使用[chat.deepseek.com](http://chat.deepseek.com)进行一般对话。
2. **编程辅助**:
- 使用[coder.deepseek.com](http://coder.deepseek.com)进行编程辅助。
### 四、本地部署(可选)
对于需要在本地部署DeepSeek Coder V2的用户,可以按照以下步骤进行:
1. **硬件要求**:
- 确保有足够的硬件资源,特别是236B模型需要80GB*8的GPU资源。
2. **使用Docker**:
- 安装Docker,并参考相关文档进行DeepSeek模型的本地部署。
- 或者根据《deepseek-r1本地部署指南》使用Ollama进行安装。
3. **配置与使用**:
- 根据官方文档进行配置,并通过命令行或可视化界面与DeepSeek模型进行交互。
### 五、API集成(可选)
对于开发者来说,可以将DeepSeek集成到自己的应用程序中:
1. **Hugging Face Transformers库**:
- DeepSeek提供了与Hugging Face Transformers库的兼容性,可以通过该库进行模型推理。
2. **API端点**:
- DeepSeek提供了API端点,需要进行适当的认证才能使用。具体步骤可以参考DeepSeek的API文档。
### 六、使用示例
以下是一个简单的使用示例,展示如何在Spring AI中集成DeepSeek Reasoner模型:
1. **添加依赖**:
在项目的`pom.xml`文件中添加Spring AI的依赖。
```xml
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-openai-spring-boot-starter</artifactId>
<version>0.8.0-SNAPSHOT</version>
</dependency>
```
2. **配置API信息**:
在`application.properties`文件中配置DeepSeek API的相关信息。
```properties
spring.ai.openai.chat.options.model=deepseek-reasoner
spring.ai.openai.base-url=https://api.deepseek.com
spring.ai.openai.api-key=sk-xxx
```
3. **移除不支持的参数**:
由于DeepSeek Reasoner不支持temperature参数,需要添加一个请求拦截器来移除该参数。
通过以上步骤,用户就可以成功地使用DeepSeek R1模型进行对话、编程辅助或集成到自己的应用程序中了。请注意,以上信息可能会随着DeepSeek平台的更新而发生变化,建议用户在使用前参考官方文档以获取最新信息。
相关文章:
如何使用DeepSeek R1
以下是如何使用DeepSeek R1的详细步骤: ### 一、注册DeepSeek账户 1. **访问官方网站**: - 打开浏览器,访问[chat.deepseek.com](http://chat.deepseek.com)。 2. **注册账户**: - 使用电子邮件、Google账户或86手机号码…...
大屏 UI 设计风格的未来趋势
在科技飞速革新的时代,大屏设备的应用领域不断拓展,从城市的智能交通指挥中心,到商场的互动广告大屏,再到家庭的超大尺寸智能电视,大屏已然成为信息展示与交互的关键载体。大屏 UI 设计风格也随之不断演变,…...
unity学习22:Application类其他功能
目录 1 是否允许后台运行 1.1 Application.runInBackground,显示是否允许后台运行 1.2 设置的地方 2 打开URL 2.1 Application.OpenURL("") 打开超链接 3 退出游戏 3.1 Application.Quit() 退出游戏 4 场景相关 5 返回游戏状态 6 控制游戏的行…...
51单片机入门_02_C语言基础0102
C语言基础部分可以参考我之前写的专栏C语言基础入门48篇 以及《从入门到就业C全栈班》中的C语言部分,本篇将会结合51单片机讲差异部分。 课程主要按照以下目录进行介绍。 文章目录 1. 进制转换2. C语言简介3. C语言中基本数据类型4. 标识符与关键字5. 变量与常量6.…...
定位的叠放次序 z-index
浮动定位和绝对定位的区别: 浮动只会压住它下面标准流的盒子,但是不会压住下面标准流盒子里面的文字,但是绝对定位(固定定位)会压住下面标准流所有的内容。...
ESP32-S3模组上跑通esp32-camera(36)
接前一篇文章:ESP32-S3模组上跑通esp32-camera(35) 一、OV5640初始化 2. 相机初始化及图像传感器配置 上一回继续对reset函数的后一段代码进行解析。为了便于理解和回顾,再次贴出reset函数源码,在components\esp32-camera\sensors\ov5640.c中,如下: static int reset…...
前端性能优化:HMR热更新和预获取加载
最近发现项目开发,有点加载快,有点却是卡机式,甚至刷新导致白屏情况。于是,我找开发和性能优化的方法,找到下面几种。 本文将深入探讨 预获取(Prefetch)、动态导入(Dynamic Import&…...
【自学笔记】计算机网络的重点知识点-持续更新
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 计算机网络重点知识点一、计算机网络概述二、网络分类三、网络性能指标四、网络协议与体系结构五、数据交换方式六、物理层与数据链路层七、网络层与运输层八、应用…...
算法基础学习——二分查找(附带Java模板)
有单调性的数列一定可以使用二分,没有单调性的题目也可能可以使用二分; (一)整数二分 二分的本质: 在某个整数区间内,存在某种性质使得区间内左半边的数都不满足该性质;而右半边的数都满足该性…...
【llm对话系统】大模型源码分析之llama模型的long context更长上下文支持
1. 引言 Llama模型的一个重要特性是支持长上下文处理。本文将深入分析Llama源码中实现长上下文的关键技术点,包括位置编码(position embedding)的外推方法、注意力机制的优化等。我们将通过详细的代码解析来理解其实现原理。 2. 位置编码的外推实现 2.1 旋转位置…...
单片机基础模块学习——NE555芯片
一、NE555电路图 NE555也称555定时器,本文主要利用NE555产生方波发生电路。整个电路相当于频率可调的方波发生器。 通过调整电位器的阻值,方波的频率也随之改变。 RB3在开发板的位置如下图 测量方波信号的引脚为SIGHAL,由上面的电路图可知,NE555已经构成完整的方波发生电…...
Hive:struct数据类型,内置函数(日期,字符串,类型转换,数学)
struct STRUCT(结构体)是一种复合数据类型,它允许你将多个字段组合成一个单一的值, 常用于处理嵌套数据,例如当你需要在一个表中存储有关另一个实体的信息时。你可以使用 STRUCT 函数来创建一个结构体。STRUCT 函数接受多个参数&…...
最优化问题 - 内点法
以下是一种循序推理的方式,来帮助你从基础概念出发,理解 内点法(Interior-Point Method, IPM) 是什么、为什么要用它,以及它是如何工作的。 1. 问题起点:带不等式约束的优化 假设你有一个带不等式约束的优…...
vim交换文件的工作原理
在vim中,交换文件是一个临时文件,当我们使用vim打开一个文件进行编辑(一定得是做出了修改才会产生交换文件)时候,vim就会自动创建一个交换文件,而之后我们对于文件的一系列修改都是在交换文件中进行的&…...
CISCO路由基础全集
第一章:交换机的工作原理和基本技能_交换机有操作系统吗-CSDN博客文章浏览阅读1.1k次,点赞24次,收藏24次。交换机可看成是一台特殊的计算机,同样有CPU、存储介质和操作系统,只是与计算机的稍有不同。作为数据交换设备&…...
网络直播时代的营销新策略:基于受众分析与开源AI智能名片2+1链动模式S2B2C商城小程序源码的探索
摘要:随着互联网技术的飞速发展,网络直播作为一种新兴的、极具影响力的媒体形式,正逐渐改变着人们的娱乐方式、消费习惯乃至社交模式。据中国互联网络信息中心数据显示,网络直播用户规模已达到3.25亿,占网民总数的45.8…...
2024年终总结——今年是蜕变的一年
2024年终总结 摘要前因转折找工作工作的成长人生的意义 摘要 2024我从国企出来,兜兜转转还是去了北京,一边是工资低、感情受挫,一边是压力大、项目经历少,让我一度找不到自己梦寐以求的工作,我投了一家又一家ÿ…...
AutoDL 云服务器:普通 用户 miniconda 配置
AutoDL 初始状态下只有root用户,miniconda 安装在root用户目录下 /// 增加普通用户 rootautodl-container-1c0641804d-5bb7040c:~/Desktop# apt updaterootautodl-container-1c0641804d-5bb7040c:~/Desktop# apt install sudorootautodl-container-1c0641804d-5…...
渲染流程概述
渲染流程包括 CPU应用程序端渲染逻辑 和 GPU渲染管线 一、CPU应用程序端渲染逻辑 剔除操作对物体进行渲染排序打包数据调用Shader SetPassCall 和 Drawcall 1.剔除操作 视椎体剔除 (给物体一个包围盒,利用包围盒和摄像机的视椎体进行碰撞检测…...
前端力扣刷题 | 4:hot100之 子串
560. 和为K的子数组 给你一个整数数组 nums 和一个整数 k ,请你统计并返回 该数组中和为 k 的子数组的个数 。 子数组是数组中元素的连续非空序列。 示例: 输入:nums [1,1,1], k 2 输出:2 法一:暴力法 var subar…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...
学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...
相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...
【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...
dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
