算法基础学习——二分查找(附带Java模板)
有单调性的数列一定可以使用二分,没有单调性的题目也可能可以使用二分;
(一)整数二分
二分的本质:
在某个整数区间内,存在某种性质使得区间内左半边的数都不满足该性质;而右半边的数都满足该性质;那么二分的作用就是找到左右这两个分界点;
1.找满足红色性质的边界点(如图上)
如果是让l等于mid(即找左半边的分界点)则要记得mid = (l+r+1)/2
2.找满足绿色性质的边界点(如图上)
如果是让r等于mid(即找右半边的分界点)则mid = (l+r)/2,不用另外加1;
情况1为什么额外加1? 答:因为在程序中,(l+r)/2是向下取整;当遇到遇到r=l+1(l和r只相差1,数组只有两个元素)的情况,(l+r)/2就等于l,这时候mid=(l+r)/2就是mid=l如下图所示:这次循环相当于没有变化,再次循环也不会有变化,进入死循环;
基本思想:不断缩小答案区间,当区间长度为一时,就是答案;
时间复杂度:平均O(logn)
步骤:
-
先写出基本模板:mid = (l+r)/2
-
定义判断条件check()函数
-
看应该是让l=mid还是r=mid;如果应该l=mid则把前面的mid改为 mid=(l+r+1)/2
模板:
// 检查x是否满足某种性质
private static boolean check(int x) { /* ... */
} // 区间[left, right]被划分成[left, mid]和[mid + 1, right]时使用:
// 或者称之为左二分查询,查找左侧第一个满足条件的数
private static int leftBinarySearch(int[] arr, int left, int right) { while (left < right) { int mid = arr[left + right >> 1]; if (check(mid)) { right = mid; // check()判断mid是否满足性质 } else { left = mid + 1; } } return left;
} // 区间[left, right]被划分成[left, mid - 1]和[mid, right]时使用:
// 或者称之为右二分查询,查找右侧最后一个满足条件的数
private static int rightBinarySearch(int[] arr, int left, int right) { while (left < right) { int mid = arr[left + right + 1 >> 1]; if (check(mid)) { left = mid; // check()判断mid是否满足性质 } else { right = mid - 1; // 有加必有减} } return left;
}
(二)浮点数二分
典型问题:求一个数的平方根
基本思想:不断缩小答案区间,当区间长度足够小时(即左右边界之差足够小),边界的值就约等于答案;
时间复杂度:平均O(logn)
步骤:
-
mid就等于(r+l)/2;
-
while循环判定条件为r-l>1e-8(左右边界之差足够小时结束循环)
模板:
// 检查x是否满足某种性质
private static boolean check(int x) { /* ... */
} // 区间[left, right]被划分成[left, mid]和[mid + 1, right]时使用:
// 或者称之为左二分查询,查找左侧第一个满足条件的数
private static int leftBinarySearch(int[] arr, int left, int right) { while (left < right) { int mid = arr[left + right >> 1]; if (check(mid)) { right = mid; // check()判断mid是否满足性质 } else { left = mid + 1; } } return left;
} // 区间[left, right]被划分成[left, mid - 1]和[mid, right]时使用:
// 或者称之为右二分查询,查找右侧最后一个满足条件的数
private static int rightBinarySearch(int[] arr, int left, int right) { while (left < right) { int mid = arr[left + right + 1 >> 1]; if (check(mid)) { left = mid; // check()判断mid是否满足性质 } else { right = mid - 1; // 有加必有减} } return left;
}
注意点:
-
使用二分一定可以找到一个满足条件的边界点(不会出现无解的情况);
-
整数二分中,l和r表示的是区间左右边界的数组下标;当遍历结束后l=r,arr[r] 就是所找的边界点;
-
浮点数二分中,l和r表示的不是数组下标,而是左右边界本身;
时间复杂度分析
二分查找(Binary Search)的时间复杂度分析如下:
1. 最好情况(Best Case)
如果目标元素正好是数组的中间元素,那么只需一次比较就能找到,时间复杂度为:
O(1)O(1)
2. 最坏情况(Worst Case)
每次查找都会将搜索范围缩小一半,假设数组长度为 nn,那么最多需要查找的次数是:
T(n)=T(n/2)+O(1)T(n) = T(n/2) + O(1)
展开递归:
T(n)=T(n/4)+O(1)+O(1)=T(n/8)+O(1)+O(1)+O(1)=…T(n) = T(n/4) + O(1) + O(1) = T(n/8) + O(1) + O(1) + O(1) = \dots
直到搜索范围缩小到 1,即 n/2k=1n/2^k = 1,解得:
k=log2nk = \log_2 n
因此,最坏情况下的时间复杂度是:
O(logn)O(\log n)
3. 平均情况(Average Case)
在没有额外信息的情况下,平均情况下也需要进行大约 O(logn) 级别的比较,因此平均时间复杂度也是:
O(logn)
总结
情况 | 时间复杂度 |
---|---|
最好情况 | O(1)O(1) |
最坏情况 | O(logn)O(\log n) |
平均情况 | O(logn)O(\log n) |
二分查找的时间复杂度远优于线性查找(O(n)),但前提是数据必须是有序的,否则需要先进行排序(如快速排序 O(nlogn)),这会影响整体效率。
相关文章:

算法基础学习——二分查找(附带Java模板)
有单调性的数列一定可以使用二分,没有单调性的题目也可能可以使用二分; (一)整数二分 二分的本质: 在某个整数区间内,存在某种性质使得区间内左半边的数都不满足该性质;而右半边的数都满足该性…...
【llm对话系统】大模型源码分析之llama模型的long context更长上下文支持
1. 引言 Llama模型的一个重要特性是支持长上下文处理。本文将深入分析Llama源码中实现长上下文的关键技术点,包括位置编码(position embedding)的外推方法、注意力机制的优化等。我们将通过详细的代码解析来理解其实现原理。 2. 位置编码的外推实现 2.1 旋转位置…...

单片机基础模块学习——NE555芯片
一、NE555电路图 NE555也称555定时器,本文主要利用NE555产生方波发生电路。整个电路相当于频率可调的方波发生器。 通过调整电位器的阻值,方波的频率也随之改变。 RB3在开发板的位置如下图 测量方波信号的引脚为SIGHAL,由上面的电路图可知,NE555已经构成完整的方波发生电…...

Hive:struct数据类型,内置函数(日期,字符串,类型转换,数学)
struct STRUCT(结构体)是一种复合数据类型,它允许你将多个字段组合成一个单一的值, 常用于处理嵌套数据,例如当你需要在一个表中存储有关另一个实体的信息时。你可以使用 STRUCT 函数来创建一个结构体。STRUCT 函数接受多个参数&…...

最优化问题 - 内点法
以下是一种循序推理的方式,来帮助你从基础概念出发,理解 内点法(Interior-Point Method, IPM) 是什么、为什么要用它,以及它是如何工作的。 1. 问题起点:带不等式约束的优化 假设你有一个带不等式约束的优…...

vim交换文件的工作原理
在vim中,交换文件是一个临时文件,当我们使用vim打开一个文件进行编辑(一定得是做出了修改才会产生交换文件)时候,vim就会自动创建一个交换文件,而之后我们对于文件的一系列修改都是在交换文件中进行的&…...

CISCO路由基础全集
第一章:交换机的工作原理和基本技能_交换机有操作系统吗-CSDN博客文章浏览阅读1.1k次,点赞24次,收藏24次。交换机可看成是一台特殊的计算机,同样有CPU、存储介质和操作系统,只是与计算机的稍有不同。作为数据交换设备&…...

网络直播时代的营销新策略:基于受众分析与开源AI智能名片2+1链动模式S2B2C商城小程序源码的探索
摘要:随着互联网技术的飞速发展,网络直播作为一种新兴的、极具影响力的媒体形式,正逐渐改变着人们的娱乐方式、消费习惯乃至社交模式。据中国互联网络信息中心数据显示,网络直播用户规模已达到3.25亿,占网民总数的45.8…...
2024年终总结——今年是蜕变的一年
2024年终总结 摘要前因转折找工作工作的成长人生的意义 摘要 2024我从国企出来,兜兜转转还是去了北京,一边是工资低、感情受挫,一边是压力大、项目经历少,让我一度找不到自己梦寐以求的工作,我投了一家又一家ÿ…...
AutoDL 云服务器:普通 用户 miniconda 配置
AutoDL 初始状态下只有root用户,miniconda 安装在root用户目录下 /// 增加普通用户 rootautodl-container-1c0641804d-5bb7040c:~/Desktop# apt updaterootautodl-container-1c0641804d-5bb7040c:~/Desktop# apt install sudorootautodl-container-1c0641804d-5…...

渲染流程概述
渲染流程包括 CPU应用程序端渲染逻辑 和 GPU渲染管线 一、CPU应用程序端渲染逻辑 剔除操作对物体进行渲染排序打包数据调用Shader SetPassCall 和 Drawcall 1.剔除操作 视椎体剔除 (给物体一个包围盒,利用包围盒和摄像机的视椎体进行碰撞检测…...
前端力扣刷题 | 4:hot100之 子串
560. 和为K的子数组 给你一个整数数组 nums 和一个整数 k ,请你统计并返回 该数组中和为 k 的子数组的个数 。 子数组是数组中元素的连续非空序列。 示例: 输入:nums [1,1,1], k 2 输出:2 法一:暴力法 var subar…...
Julia 之 @btime 精准测量详解
Julia 语言因其高性能和易用性在科学计算、数据分析等领域获得了广泛关注。在性能优化中,精准测量代码执行时间是至关重要的任务,而 Julia 提供了强大的工具 btime 来辅助这一任务。本文将围绕 Julia 的 btime 来展开,帮助读者深入理解并高效…...
【Django教程】用户管理系统
Get Started With Django User Management 开始使用Django用户管理 By the end of this tutorial, you’ll understand that: 在本教程结束时,您将了解: Django’s user authentication is a built-in authentication system that comes with pre-conf…...
【机器学习】自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
一、使用pytorch框架实现逻辑回归 1. 数据部分: 首先自定义了一个简单的数据集,特征 X 是 100 个随机样本,每个样本一个特征,目标值 y 基于线性关系并添加了噪声。将 numpy 数组转换为 PyTorch 张量,方便后续在模型中…...

C语言连接Mysql
目录 C语言连接Mysql下载 mysql 开发库 方法介绍mysql_init()mysql_real_connect()mysql_query()mysql_store_result()mysql_num_fields()mysql_fetch_fields()mysql_fetch_row()mysql_free_result()mysql_close() 完整代码 C语言连接Mysql 下载 mysql 开发库 方法一…...

Windows上通过Git Bash激活Anaconda
在Windows上配置完Anaconda后,普遍通过Anaconda Prompt激活虚拟环境并执行Python,如下图所示: 有时需要连续执行多个python脚本时,直接在Anaconda Prompt下可以通过在以下方式,即命令间通过&&连接,…...

面试经典150题——图
文章目录 1、岛屿数量1.1 题目链接1.2 题目描述1.3 解题代码1.4 解题思路 2、被围绕的区域2.1 题目链接2.2 题目描述2.3 解题代码2.4 解题思路 3、克隆图3.1 题目链接3.2 题目描述3.3 解题代码3.4 解题思路 4、除法求值4.1 题目链接4.2 题目描述4.3 解题代码4.4 解题思路 5、课…...

学习数据结构(1)时间复杂度
1.数据结构和算法 (1)数据结构是计算机存储、组织数据的方式,指相互之间存在⼀种或多种特定关系的数据元素的集合 (2)算法就是定义良好的计算过程,取一个或一组的值为输入,并产生出一个或一组…...

项目集成GateWay
文章目录 1.环境搭建1.创建sunrays-common-cloud-gateway-starter模块2.目录结构3.自动配置1.GateWayAutoConfiguration.java2.spring.factories 3.pom.xml4.注意:GateWay不能跟Web一起引入! 1.环境搭建 1.创建sunrays-common-cloud-gateway-starter模块…...

测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...

Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...

算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...

C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...

GO协程(Goroutine)问题总结
在使用Go语言来编写代码时,遇到的一些问题总结一下 [参考文档]:https://www.topgoer.com/%E5%B9%B6%E5%8F%91%E7%BC%96%E7%A8%8B/goroutine.html 1. main()函数默认的Goroutine 场景再现: 今天在看到这个教程的时候,在自己的电…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器
拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...
鸿蒙(HarmonyOS5)实现跳一跳小游戏
下面我将介绍如何使用鸿蒙的ArkUI框架,实现一个简单的跳一跳小游戏。 1. 项目结构 src/main/ets/ ├── MainAbility │ ├── pages │ │ ├── Index.ets // 主页面 │ │ └── GamePage.ets // 游戏页面 │ └── model │ …...