【漫话机器学习系列】068.网格搜索(GridSearch)
网格搜索(Grid Search)
网格搜索(Grid Search)是一种用于优化机器学习模型超参数的技术。它通过系统地遍历给定的参数组合,找出使模型性能达到最优的参数配置。
网格搜索的核心思想
-
定义参数网格
创建一个包含超参数值的参数网格(即所有可能的超参数组合)。 -
遍历参数组合
按照网格中的所有组合训练模型并评估性能。 -
选择最佳参数
通过某种评价指标(如准确率、F1分数或均方误差),找到性能最优的参数配置。
网格搜索的流程
-
数据准备
准备好训练集和验证集,验证集用于评估每个参数组合的性能。 -
定义模型
指定需要优化的模型(例如决策树、支持向量机或深度学习模型)。 -
参数范围
定义需要调节的超参数及其可能的取值范围。例如:- 对于 SVM,可以搜索
C
和gamma
。 - 对于随机森林,可以搜索
max_depth
和n_estimators
。
- 对于 SVM,可以搜索
-
训练与评估
遍历所有参数组合,训练模型,并在验证集上评估性能。 -
选择最佳参数
根据验证集的评价指标,选出性能最好的超参数组合。
代码示例
以下是一个使用 Python 的 scikit-learn
实现网格搜索的例子:
from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
from sklearn.datasets import load_iris# 加载数据集
data = load_iris()
X, y = data.data, data.target# 定义模型
model = SVC()# 定义参数网格
param_grid = {'C': [0.1, 1, 10, 100],'gamma': [1, 0.1, 0.01, 0.001],'kernel': ['rbf']
}# 网格搜索
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, scoring='accuracy')
grid_search.fit(X, y)# 输出最佳参数和对应的性能
print("Best Parameters:", grid_search.best_params_)
print("Best Accuracy:", grid_search.best_score_)
运行结果
Best Parameters: {'C': 1, 'gamma': 0.1, 'kernel': 'rbf'}
Best Accuracy: 0.9800000000000001
优点
-
系统全面
通过遍历所有参数组合,保证找到全局最优解。 -
易于实现
各种机器学习库(如scikit-learn
)提供了简单的接口来实现网格搜索。 -
可扩展性
能适应大多数模型的超参数优化问题。
缺点
-
计算成本高
随着参数数量和可能的取值增加,搜索空间会呈指数级增长,导致训练时间过长。 -
无智能性
它是穷举搜索,没有考虑参数之间的相关性。
改进方法
-
随机搜索(Random Search)
不遍历所有参数组合,而是随机采样部分参数进行评估,通常能显著减少计算成本。 -
贝叶斯优化(Bayesian Optimization)
使用概率模型选择下一组参数,能够以更少的评估找到更优解。 -
网格搜索与交叉验证结合
使用交叉验证(Cross Validation)评估每组参数的性能,保证模型的泛化能力。
应用场景
- 监督学习:如分类器(SVM、随机森林)和回归模型的参数优化。
- 无监督学习:如聚类算法(K-Means)的超参数调整。
- 深度学习:在简单任务中优化超参数,如学习率、批量大小、网络层数等。
网格搜索是超参数调优的重要工具,尽管其计算成本较高,但在很多情况下仍然是强大且可靠的优化方法。
相关文章:

【漫话机器学习系列】068.网格搜索(GridSearch)
网格搜索(Grid Search) 网格搜索(Grid Search)是一种用于优化机器学习模型超参数的技术。它通过系统地遍历给定的参数组合,找出使模型性能达到最优的参数配置。 网格搜索的核心思想 定义参数网格 创建一个包含超参数值…...

元宇宙下的Facebook:虚拟现实与社交的结合
随着科技的不断进步,虚拟现实(VR)技术逐渐从科幻走入现实,成为人们探索未来社交方式的重要工具。在这一浪潮中,Facebook(现为Meta)作为全球领先的社交平台,正在积极布局虚拟现实和元…...

记忆力训练day08
写作头脑风暴训练 1 集体的头脑风暴: 2 一个人的头脑风暴 没事,你说老师我还没有摸到门道,你去做,做的时候你就会知道什么叫做头脑风暴。记住,不要用脑子就在感觉里面,你究竟想给人呈现一种什么样的文章&am…...

崇州市街子古镇正月初一繁华剪影
今天是蛇年正月初一,下午笔者步出家门,逛到了崇州市街子古镇井水街,想看看景象如何。结果看到的是车水马龙、人流如织,繁花似锦,热闹非凡,原来今天开始预订此地摆下的长街宴。心里高兴,便用手机…...
websocket webworker教程及应用
WebSocket 和 Web Workers 是两种不同的 Web 技术,分别用于实现实时通信和后台线程处理。以下是它们的简要教程: WebSocket 教程 1. 什么是 WebSocket? WebSocket 是一种在单个 TCP 连接上进行全双工通信的协议。它允许服务器主动向客户端推…...
【后端】Flask
长期更新,建议关注收藏点赞! 实例1 Jinja2 是 Flask 和 Django 使用的 模板引擎,它允许你在 HTML 中嵌入 Python 代码,以动态生成页面内容。Jinja2 语法类似于 Django 模板,并支持变量、条件判断、循环、过滤器等。 fr…...
【cran Archive R包的安装方式】
cran Archive R包的安装方式 添加链接描述 1.包被cran移除 2.包要求的R语言版本与你电脑上的版本不相符 ad archive包的网址或者是下载到工作目录下,ad等于文件名 install,packages(ad repos NULL)...

如何用matlab画一条蛇
文章目录 源代码运行结果代码说明结果 源代码 % 画蛇的代码 % 2025-01-28/Ver1 % 清空环境 clc; clear; close all;% 定义蛇的身体坐标 t linspace(0, 4*pi, 100); % 参数化变量 x t; % x坐标 y sin(t) 0.5 * sin(3*t); % y坐标,形成更复…...

Greenplum临时表未清除导致库龄过高处理
1.问题 Greenplum集群segment后台日志报错 2.回收库龄 master上执行 vacuumdb -F -d cxy vacuumdb -F -d template1 vacuumdb -F -d rptdb 3.回收完成后检查 仍然发现segment还是有库龄报警警告信息发出 4.检查 4.1 在master上检查库年龄 SELECT datname, datfrozen…...

【Linux】gdb——Linux调试器
gdb使用背景 程序的发布方式有两种,debug模式和release模式 Linux gcc/g出来的二进制程序,默认是release模式 要使用gdb调试,必须在源代码生成二进制程序的时候, 加上 -g 选项 gdb使用方法 首先进入gdb gdb test_glist显示代码 断点 b 行…...

C++ 中用于控制输出格式的操纵符——setw 、setfill、setprecision、fixed
目录 四种操纵符简要介绍 setprecision基本用法 setfill的基本用法 fixed的基本用法 setw基本用法 以下是一些常见的用法和示例: 1. 设置字段宽度和填充字符 2. 设置字段宽度和对齐方式 3. 设置字段宽度和精度 4. 设置字段宽度和填充字符,结合…...

C++ ——— 学习并使用 priority_queue 类
目录 何为 priority_queue 类 学习并使用 priority_queue 类 实例化一个 priority_queue 类对象 插入数据 遍历堆(默认是大堆) 通过改变实例化的模板参数修改为小堆 何为 priority_queue 类 priority_queue 类为 优先级队列,其本质就是…...

基础项目实战——3D赛车(c++)
目录 前言一、渲染引擎二、关闭事件三、梯形绘制四、轨道绘制五、边缘绘制六、草坪绘制七、前后移动八、左右移动九、曲线轨道十、课山坡轨道十一、循环轨道十二、背景展示十三、引入速度十四、物品绘制十五、课数字路障十六、分数展示十七、重新生成十八、…...

ODP(OBProxy)路由初探
OBProxy路由策略 Primary Zone 路由 官方声明默认情况,会将租户请求发送到租户的 primary zone 所在的机器上,通过 Primary Zone 路由可以尽量发往主副本,方便快速寻找 Leader 副本。另外,设置primary zone 也会在一定成都上减少…...

从零推导线性回归:最小二乘法与梯度下降的数学原理
欢迎来到我的主页:【Echo-Nie】 本篇文章收录于专栏【机器学习】 本文所有内容相关代码都可在以下仓库中找到: Github-MachineLearning 1 线性回归 1.1 什么是线性回归 线性回归是一种用来预测和分析数据之间关系的工具。它的核心思想是找到一条直…...
计算机网络__基础知识问答
Question: 1)在计算机网络的5层结构中,每一层的功能大概是什么? 2)交换机的功能?https://www.bilibili.com/video/BV1na4y1L7Ev 3)路由器的功能?https://www.bilibili.com/video/BV1hv411k7n…...
第 5 章:声音与音乐系统
5.1 声音效果的应用 在游戏中,声音效果是增强游戏沉浸感和趣味性的重要元素。Pygame 提供了强大的音频处理功能,使得添加各种声音效果变得相对简单。声音效果可以包括角色的动作音效,如跳跃、攻击、受伤时的声音;环境音效&#x…...

C语言编译过程全面解析
今天是2025年1月26日,农历腊月二十七,一个距离新春佳节仅一步之遥的日子。城市的喧嚣中,年味已悄然弥漫——能在这个时候坚持上班的人,真可称为“牛人”了吧,哈哈。。。。 此刻,我在重新审视那些曾被遗忘的…...

算法每日双题精讲 —— 前缀和(【模板】一维前缀和,【模板】二维前缀和)
在算法竞赛与日常编程中,前缀和是一种极为实用的预处理技巧,能显著提升处理区间和问题的效率。今天,我们就来深入剖析一维前缀和与二维前缀和这两个经典模板。 一、【模板】一维前缀和 题目描述 给定一个长度为 n n n 的整数数组 a a a&…...

Maui学习笔记- SQLite简单使用案例02添加详情页
我们继续上一个案例,实现一个可以修改当前用户信息功能。 当用户点击某个信息时,跳转到信息详情页,然后可以点击编辑按钮导航到编辑页面。 创建项目 我们首先在ViewModels目录下创建UserDetailViewModel。 实现从详情信息页面导航到编辑页面…...

微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...

基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...