当前位置: 首页 > news >正文

【漫话机器学习系列】068.网格搜索(GridSearch)

网格搜索(Grid Search)

网格搜索(Grid Search)是一种用于优化机器学习模型超参数的技术。它通过系统地遍历给定的参数组合,找出使模型性能达到最优的参数配置。


网格搜索的核心思想

  1. 定义参数网格
    创建一个包含超参数值的参数网格(即所有可能的超参数组合)。

  2. 遍历参数组合
    按照网格中的所有组合训练模型并评估性能。

  3. 选择最佳参数
    通过某种评价指标(如准确率、F1分数或均方误差),找到性能最优的参数配置。


网格搜索的流程

  1. 数据准备
    准备好训练集和验证集,验证集用于评估每个参数组合的性能。

  2. 定义模型
    指定需要优化的模型(例如决策树、支持向量机或深度学习模型)。

  3. 参数范围
    定义需要调节的超参数及其可能的取值范围。例如:

    • 对于 SVM,可以搜索 Cgamma
    • 对于随机森林,可以搜索 max_depthn_estimators
  4. 训练与评估
    遍历所有参数组合,训练模型,并在验证集上评估性能。

  5. 选择最佳参数
    根据验证集的评价指标,选出性能最好的超参数组合。


代码示例

以下是一个使用 Python 的 scikit-learn 实现网格搜索的例子:

from sklearn.model_selection import GridSearchCV
from sklearn.svm import SVC
from sklearn.datasets import load_iris# 加载数据集
data = load_iris()
X, y = data.data, data.target# 定义模型
model = SVC()# 定义参数网格
param_grid = {'C': [0.1, 1, 10, 100],'gamma': [1, 0.1, 0.01, 0.001],'kernel': ['rbf']
}# 网格搜索
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, scoring='accuracy')
grid_search.fit(X, y)# 输出最佳参数和对应的性能
print("Best Parameters:", grid_search.best_params_)
print("Best Accuracy:", grid_search.best_score_)

 运行结果

Best Parameters: {'C': 1, 'gamma': 0.1, 'kernel': 'rbf'}
Best Accuracy: 0.9800000000000001

 


优点

  1. 系统全面
    通过遍历所有参数组合,保证找到全局最优解。

  2. 易于实现
    各种机器学习库(如 scikit-learn)提供了简单的接口来实现网格搜索。

  3. 可扩展性
    能适应大多数模型的超参数优化问题。


缺点

  1. 计算成本高
    随着参数数量和可能的取值增加,搜索空间会呈指数级增长,导致训练时间过长。

  2. 无智能性
    它是穷举搜索,没有考虑参数之间的相关性。


改进方法

  • 随机搜索(Random Search)
    不遍历所有参数组合,而是随机采样部分参数进行评估,通常能显著减少计算成本。

  • 贝叶斯优化(Bayesian Optimization)
    使用概率模型选择下一组参数,能够以更少的评估找到更优解。

  • 网格搜索与交叉验证结合
    使用交叉验证(Cross Validation)评估每组参数的性能,保证模型的泛化能力。


应用场景

  1. 监督学习:如分类器(SVM、随机森林)和回归模型的参数优化。
  2. 无监督学习:如聚类算法(K-Means)的超参数调整。
  3. 深度学习:在简单任务中优化超参数,如学习率、批量大小、网络层数等。

网格搜索是超参数调优的重要工具,尽管其计算成本较高,但在很多情况下仍然是强大且可靠的优化方法。

 

相关文章:

【漫话机器学习系列】068.网格搜索(GridSearch)

网格搜索(Grid Search) 网格搜索(Grid Search)是一种用于优化机器学习模型超参数的技术。它通过系统地遍历给定的参数组合,找出使模型性能达到最优的参数配置。 网格搜索的核心思想 定义参数网格 创建一个包含超参数值…...

元宇宙下的Facebook:虚拟现实与社交的结合

随着科技的不断进步,虚拟现实(VR)技术逐渐从科幻走入现实,成为人们探索未来社交方式的重要工具。在这一浪潮中,Facebook(现为Meta)作为全球领先的社交平台,正在积极布局虚拟现实和元…...

记忆力训练day08

写作头脑风暴训练 1 集体的头脑风暴: 2 一个人的头脑风暴 没事,你说老师我还没有摸到门道,你去做,做的时候你就会知道什么叫做头脑风暴。记住,不要用脑子就在感觉里面,你究竟想给人呈现一种什么样的文章&am…...

崇州市街子古镇正月初一繁华剪影

今天是蛇年正月初一,下午笔者步出家门,逛到了崇州市街子古镇井水街,想看看景象如何。结果看到的是车水马龙、人流如织,繁花似锦,热闹非凡,原来今天开始预订此地摆下的长街宴。心里高兴,便用手机…...

websocket webworker教程及应用

WebSocket 和 Web Workers 是两种不同的 Web 技术,分别用于实现实时通信和后台线程处理。以下是它们的简要教程: WebSocket 教程 1. 什么是 WebSocket? WebSocket 是一种在单个 TCP 连接上进行全双工通信的协议。它允许服务器主动向客户端推…...

【后端】Flask

长期更新,建议关注收藏点赞! 实例1 Jinja2 是 Flask 和 Django 使用的 模板引擎,它允许你在 HTML 中嵌入 Python 代码,以动态生成页面内容。Jinja2 语法类似于 Django 模板,并支持变量、条件判断、循环、过滤器等。 fr…...

【cran Archive R包的安装方式】

cran Archive R包的安装方式 添加链接描述 1.包被cran移除 2.包要求的R语言版本与你电脑上的版本不相符 ad archive包的网址或者是下载到工作目录下,ad等于文件名 install,packages(ad repos NULL)...

如何用matlab画一条蛇

文章目录 源代码运行结果代码说明结果 源代码 % 画蛇的代码 % 2025-01-28/Ver1 % 清空环境 clc; clear; close all;% 定义蛇的身体坐标 t linspace(0, 4*pi, 100); % 参数化变量 x t; % x坐标 y sin(t) 0.5 * sin(3*t); % y坐标,形成更复…...

Greenplum临时表未清除导致库龄过高处理

1.问题 Greenplum集群segment后台日志报错 2.回收库龄 master上执行 vacuumdb -F -d cxy vacuumdb -F -d template1 vacuumdb -F -d rptdb 3.回收完成后检查 仍然发现segment还是有库龄报警警告信息发出 4.检查 4.1 在master上检查库年龄 SELECT datname, datfrozen…...

【Linux】gdb——Linux调试器

gdb使用背景 程序的发布方式有两种,debug模式和release模式 Linux gcc/g出来的二进制程序,默认是release模式 要使用gdb调试,必须在源代码生成二进制程序的时候, 加上 -g 选项 gdb使用方法 首先进入gdb gdb test_glist显示代码 断点 b 行…...

C++ 中用于控制输出格式的操纵符——setw 、setfill、setprecision、fixed

目录 四种操纵符简要介绍 setprecision基本用法 setfill的基本用法 fixed的基本用法 setw基本用法 以下是一些常见的用法和示例: 1. 设置字段宽度和填充字符 2. 设置字段宽度和对齐方式 3. 设置字段宽度和精度 4. 设置字段宽度和填充字符,结合…...

C++ ——— 学习并使用 priority_queue 类

目录 何为 priority_queue 类 学习并使用 priority_queue 类 实例化一个 priority_queue 类对象 插入数据 遍历堆(默认是大堆) 通过改变实例化的模板参数修改为小堆 何为 priority_queue 类 priority_queue 类为 优先级队列,其本质就是…...

基础项目实战——3D赛车(c++)

目录 前言一、渲染引擎二、关闭事件三、梯形绘制四、轨道绘制五、边缘绘制六、草坪绘制七、前后移动八、左右移动​九、曲线轨道​十、课山坡轨道​十一、循环轨道​十二、背景展示​十三、引入速度​十四、物品绘制​十五、课数字路障​十六、分数展示​十七、重新生成​十八、…...

ODP(OBProxy)路由初探

OBProxy路由策略 Primary Zone 路由 官方声明默认情况,会将租户请求发送到租户的 primary zone 所在的机器上,通过 Primary Zone 路由可以尽量发往主副本,方便快速寻找 Leader 副本。另外,设置primary zone 也会在一定成都上减少…...

从零推导线性回归:最小二乘法与梯度下降的数学原理

​ 欢迎来到我的主页:【Echo-Nie】 本篇文章收录于专栏【机器学习】 本文所有内容相关代码都可在以下仓库中找到: Github-MachineLearning 1 线性回归 1.1 什么是线性回归 线性回归是一种用来预测和分析数据之间关系的工具。它的核心思想是找到一条直…...

计算机网络__基础知识问答

Question: 1)在计算机网络的5层结构中,每一层的功能大概是什么? 2)交换机的功能?https://www.bilibili.com/video/BV1na4y1L7Ev 3)路由器的功能?https://www.bilibili.com/video/BV1hv411k7n…...

第 5 章:声音与音乐系统

5.1 声音效果的应用 在游戏中,声音效果是增强游戏沉浸感和趣味性的重要元素。Pygame 提供了强大的音频处理功能,使得添加各种声音效果变得相对简单。声音效果可以包括角色的动作音效,如跳跃、攻击、受伤时的声音;环境音效&#x…...

C语言编译过程全面解析

今天是2025年1月26日,农历腊月二十七,一个距离新春佳节仅一步之遥的日子。城市的喧嚣中,年味已悄然弥漫——能在这个时候坚持上班的人,真可称为“牛人”了吧,哈哈。。。。 此刻,我在重新审视那些曾被遗忘的…...

算法每日双题精讲 —— 前缀和(【模板】一维前缀和,【模板】二维前缀和)

在算法竞赛与日常编程中,前缀和是一种极为实用的预处理技巧,能显著提升处理区间和问题的效率。今天,我们就来深入剖析一维前缀和与二维前缀和这两个经典模板。 一、【模板】一维前缀和 题目描述 给定一个长度为 n n n 的整数数组 a a a&…...

Maui学习笔记- SQLite简单使用案例02添加详情页

我们继续上一个案例,实现一个可以修改当前用户信息功能。 当用户点击某个信息时,跳转到信息详情页,然后可以点击编辑按钮导航到编辑页面。 创建项目 我们首先在ViewModels目录下创建UserDetailViewModel。 实现从详情信息页面导航到编辑页面…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...

Python:操作 Excel 折叠

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制&#xff0…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层&#xf…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...