什么是长短期记忆网络?
一、概念
长短期记忆网络(Long Short-Term Memory, LSTM)是一种特殊的循环神经网络(RNN),旨在解决标准RNN在处理长序列时的梯度消失和梯度爆炸问题。LSTM通过引入三个门(输入门、遗忘门和输出门)来控制信息的流动。其中,每个门都是一个神经网络层,用于决定哪些信息应该被保留,哪些信息应该被丢弃。LSTM的核心是细胞状态(cell state),它通过这些门的控制来更新和传递信息。
二、核心算法

令为时间步 t 的输入向量,
为前一个时间步的隐藏状态向量,
为当前时间步的隐藏状态向量,
为前一个时间步的细胞状态向量,
为当前时间步的细胞状态变量,
为当前时间步的遗忘门向量,
为当前时间步的输入门向量,
为当前时间步的候选细胞状态向量,
为当前时间步的输出门向量,
分别为各门的权重矩阵,
为偏置向量,
为sigmoid激活函数,tanh为tanh激活函数,*为元素级乘法。LSTM的核心内容包括以下几个部分:
1、遗忘门(Forget Gate)
遗忘门决定细胞状态中哪些信息需要被遗忘。通过sigmoid激活函数,遗忘门的输出在0到1之间,表示每个细胞状态元素被保留的比例。
2、输入门(Input Gate)
输入门决定哪些新的信息需要被写入细胞状态。通过sigmoid激活函数,输入门的输出在0到1之间,表示每个候选细胞状态元素被写入的比例。候选细胞状态通过tanh激活函数生成,表示新的信息。
3、细胞状态更新
细胞状态结合遗忘门和输入门的结果进行更新。遗忘门的输出与前一个时间步的细胞状态相乘,表示保留的旧信息。输入门的输出与候选细胞状态相乘,表示写入的新信息。两者相加得到当前时间步的细胞状态。
4、输出门(Output Gate)
输出门决定细胞状态的哪些部分将作为输出。通过sigmoid激活函数,输出门的输出在0到1之间,表示每个细胞状态元素被输出的比例。细胞状态通过tanh激活函数进行非线性变换,然后与输出门的输出相乘,得到当前时间步的隐藏状态。
三、python实现
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split# 生成正弦波数据
def generate_sine_wave(seq_length, num_samples):x = np.linspace(0, num_samples, num_samples)y = np.sin(x)data = []for i in range(len(y) - seq_length):data.append(y[i:i+seq_length+1])return np.array(data)# 定义LSTM模型
class LSTMModel(nn.Module):def __init__(self, input_size, hidden_size, output_size, num_layers):super(LSTMModel, self).__init__()self.hidden_size = hidden_sizeself.num_layers = num_layersself.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)self.fc = nn.Linear(hidden_size, output_size)def forward(self, x):h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)out, _ = self.lstm(x, (h0, c0))out = self.fc(out[:, -1, :])return out# 超参数设置
seq_length = 50
num_samples = 1000
input_size = 1
hidden_size = 50
output_size = 1
num_layers = 2
batch_size = 64
learning_rate = 0.001
num_epochs = 5
test_size = 0.2 # 测试集占比# 生成数据
data = generate_sine_wave(seq_length, num_samples)
X = data[:, :-1]
y = data[:, -1]# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=42)# 转换为Tensor
X_train = torch.tensor(X_train.reshape(-1, seq_length, input_size), dtype=torch.float32)
y_train = torch.tensor(y_train.reshape(-1, output_size), dtype=torch.float32)
X_test = torch.tensor(X_test.reshape(-1, seq_length, input_size), dtype=torch.float32)
y_test = torch.tensor(y_test.reshape(-1, output_size), dtype=torch.float32)# 创建数据加载器
train_dataset = torch.utils.data.TensorDataset(X_train, y_train)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = torch.utils.data.TensorDataset(X_test, y_test)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)# 初始化模型、损失函数和优化器
model = LSTMModel(input_size, hidden_size, output_size, num_layers)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)# 训练模型
for epoch in range(num_epochs):model.train()for i, (inputs, labels) in enumerate(train_loader):outputs = model(inputs)loss = criterion(outputs, labels)optimizer.zero_grad()loss.backward()optimizer.step()print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')# 测试模型
model.eval()
with torch.no_grad():predicted = []actual = []for inputs, labels in test_loader:outputs = model(inputs)predicted.extend(outputs.numpy())actual.extend(labels.numpy())# 绘制结果
plt.plot(actual, label='Actual data')
plt.plot(predicted, label='Predicted data')
plt.legend()
plt.show()

四、总结
LSTM能够捕捉长时间依赖关系,使得模型在处理长序列数据时表现得比标准的RNN更好。但由于LSTM的计算依赖于前一个时间步的输出,这使得这样的网络结构难以并行化,在处理大规模数据时的效率较低。
相关文章:
什么是长短期记忆网络?
一、概念 长短期记忆网络(Long Short-Term Memory, LSTM)是一种特殊的循环神经网络(RNN),旨在解决标准RNN在处理长序列时的梯度消失和梯度爆炸问题。LSTM通过引入三个门(输入门、遗忘门和输出门)…...
git中有关old mode 100644、new mode 10075的问题解决小结
在 Git 版本控制系统中,文件权限变更是一种常见情况。当你看到类似 old mode 100644 和 new mode 100755 的信息时,这通常表示文件的权限发生了变化。本文将详细解析这种情况,并提供解决方法和注意事项。 问题背景 在 Git 中,文…...
Jenkins上生成的allure report打不开怎么处理
目录 问题背景: 原因: 解决方案: Jenkins上修改配置 通过Groovy脚本在Script Console中设置和修改系统属性 步骤 验证是否清空成功 进一步的定制 也可以使用Nginx去解决 使用逆向代理服务器Nginx: 通过合理调整CSP配置&a…...
JSR303校验教学
1、什么是JSR303校验 JSR是Java Specification Requests的缩写,意思是Java 规范提案。是指向JCP(Java Community Process)提出新增一个标准化技术规范的正式请求。任何人都可以提交JSR,以向Java平台增添新的API和服务。JSR已成为Java界的一个重要标准。…...
使用DeepSeek技巧:提升内容创作效率与质量
一、引言 在当今快节奏的数字时代,内容创作的需求不断增加,无论是企业营销、个人博客还是学术研究,高效且高质量的内容生成变得至关重要。DeepSeek作为一款先进的人工智能写作助手,凭借其强大的语言生成能力,为创作者…...
【第六天】零基础入门刷题Python-算法篇-数据结构与算法的介绍-一种常见的贪心算法(持续更新)
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、Python数据结构与算法的详细介绍1.Python中的常用的贪心算法2.贪心算法3.详细的贪心代码1)一种常见的贪心算法 总结 前言 提示:这里…...
C# Winform制作一个登录系统
using System; using System.Collections; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Linq; using System.Text; using System.Threading.Tasks; using System.Windows.Forms;namespace 登录 {p…...
算法总结-哈希表
文章目录 1.赎金信1.答案2.思路 2.字母异位词分组1.答案2.思路 3.两数之和1.答案2.思路 4.快乐数1.答案2.思路 5.最长连续序列1.答案2.思路 1.赎金信 1.答案 package com.sunxiansheng.arithmetic.day14;/*** Description: 383. 赎金信** Author sun* Create 2025/1/22 11:10…...
向下调整算法(详解)c++
算法流程: 与⽗结点的权值作⽐较,如果⽐它⼤,就与⽗亲交换; 交换完之后,重复 1 操作,直到⽐⽗亲⼩,或者换到根节点的位置 大家可能会有点疑惑,这个是大根堆,22是怎么跑到…...
蓝桥杯之c++入门(一)【C++入门】
目录 前言5. 算术操作符5.1 算术操作符5.2 浮点数的除法5.3 负数取模5.4 数值溢出5.5 练习练习1:计算 ( a b ) ⋆ c (ab)^{\star}c (ab)⋆c练习2:带余除法练习3:整数个位练习4:整数十位练习5:时间转换练习6ÿ…...
使用Python爬虫获取1688商品拍立淘API接口(item_search_img)的实战指南
在电商领域,通过图片搜索商品(拍立淘)已经成为一种重要的商品检索方式。1688平台的item_search_img接口允许用户通过上传图片来搜索相似商品,这为商品信息采集和市场分析提供了极大的便利。本文将详细介绍如何使用Python爬虫技术调…...
ElasticSearch-文档元数据乐观并发控制
文章目录 什么是文档?文档元数据文档的部分更新Update 乐观并发控制 最近日常工作开发过程中使用到了 ES,最近在检索资料的时候翻阅到了 ES 的官方文档,里面对 ES 的基础与案例进行了通俗易懂的解释,读下来也有不少收获࿰…...
使用Navicat Premium管理数据库时,如何关闭事务默认自动提交功能?
使用Navicat Premium管理数据库时,最糟心的事情莫过于事务默认自动提交,也就是你写完语句运行时,它自动执行commit提交至数据库,此时你就无法进行回滚操作。 建议您尝试取消勾选“选项”中的“自动开始事务”,点击“工…...
【单细胞-第三节 多样本数据分析】
文件在单细胞\5_GC_py\1_single_cell\1.GSE183904.Rmd GSE183904 数据原文 1.获取临床信息 筛选样本可以参考临床信息 rm(list ls()) library(tinyarray) a geo_download("GSE183904")$pd head(a) table(a$Characteristics_ch1) #统计各样本有多少2.批量读取 学…...
(java) IO流
学习IO流之前,我们需要先认识file对象,帮助我们更好的使用IO流 1.1 file 作用:关联硬盘上的文件 写法: File(String path); (推荐)File(String parent, String child); //由父级路径,再子级路径拼接而成File(File p…...
2025年1月个人工作生活总结
本文为 2025年1月工作生活总结。 研发编码 使用sqlite3命令行查询表数据 可以直接使用sqlite3查询数据表,不需进入命令行模式。示例如下: sqlite3 database_name.db "SELECT * FROM table_name;"linux shell使用read超时一例 先前有个编译…...
线性调整器——耗能型调整器
线性调整器又称线性电压调节器,以下是关于它的介绍: 基本工作原理 线性调整器的基本电路如图1.1(a)所示,晶体管Q1(工作于线性状态,或非开关状态)构成一个连接直流源V和输出端V。的可调电气电阻,直流源V由60Hz隔离变压器(电气隔离和整流&#…...
【2025美赛D题】为更美好的城市绘制路线图建模|建模过程+完整代码论文全解全析
你是否在寻找数学建模比赛的突破点?数学建模进阶思路! 作为经验丰富的美赛O奖、国赛国一的数学建模团队,我们将为你带来本次数学建模竞赛的全面解析。这个解决方案包不仅包括完整的代码实现,还有详尽的建模过程和解析,…...
【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.28 存储之道:跨平台数据持久化方案
好的,我将按照您的要求生成一篇高质量的Python NumPy文章。以下是第28篇《存储之道:跨平台数据持久化方案》的完整内容,包括目录、正文和参考文献。 1.28 存储之道:跨平台数据持久化方案 目录 #mermaid-svg-n1z37AP8obEgptkD {f…...
拼车(1094)
1094. 拼车 - 力扣(LeetCode) 解法: class Solution { public:bool carPooling(vector<vector<int>>& trips, int capacity) {uint32_t passenger_cnt 0;//将原数据按照from排序auto func_0 [](vector<int> & …...
从WWDC看苹果产品发展的规律
WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...
模型参数、模型存储精度、参数与显存
模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...
聊聊 Pulsar:Producer 源码解析
一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
JVM暂停(Stop-The-World,STW)的原因分类及对应排查方案
JVM暂停(Stop-The-World,STW)的完整原因分类及对应排查方案,结合JVM运行机制和常见故障场景整理而成: 一、GC相关暂停 1. 安全点(Safepoint)阻塞 现象:JVM暂停但无GC日志,日志显示No GCs detected。原因:JVM等待所有线程进入安全点(如…...
项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
虚拟电厂发展三大趋势:市场化、技术主导、车网互联
市场化:从政策驱动到多元盈利 政策全面赋能 2025年4月,国家发改委、能源局发布《关于加快推进虚拟电厂发展的指导意见》,首次明确虚拟电厂为“独立市场主体”,提出硬性目标:2027年全国调节能力≥2000万千瓦࿰…...
Golang——9、反射和文件操作
反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一:使用Read()读取文件2.3、方式二:bufio读取文件2.4、方式三:os.ReadFile读取2.5、写…...
