当前位置: 首页 > news >正文

每日一题——序列化二叉树

序列化二叉树

  • BM39 序列化二叉树
    • 题目描述
      • 序列化
      • 反序列化
    • 示例
      • 示例1
      • 示例2
    • 解题思路
      • 序列化过程
      • 反序列化过程
    • 代码实现
    • 代码说明
    • 复杂度分析
    • 总结

BM39 序列化二叉树

题目描述

请实现两个函数,分别用来序列化和反序列化二叉树。二叉树的序列化是将二叉树按照某种遍历方式转换为字符串格式,而反序列化则是根据字符串重建出原二叉树。

序列化

二叉树的序列化(Serialize)是指将二叉树转换为字符串,通常我们使用层序遍历的方式将树的节点值逐个保存。在序列化的过程中,用某种符号表示空节点(如#),例如:层序序列化的结果为"{1,2,3,#,#,6,7}"

反序列化

二叉树的反序列化(Deserialize)是指根据序列化后的字符串重建出二叉树。例如,给定序列化字符串"{1,2,3,#,#,6,7}",我们可以重新构造出与原二叉树相同的树结构。

示例

在这里插入图片描述

示例1

输入:

{1,2,3,#,#,6,7}

返回值:

{1,2,3,#,#,6,7}

示例2

在这里插入图片描述

输入:

{8,6,10,5,7,9,11}

返回值:

{8,6,10,5,7,9,11}

解题思路

序列化过程

  1. 使用层序遍历的方式遍历二叉树。
  2. 将每个节点的值转化为字符串,并用#表示空节点。
  3. 将结果以逗号连接形成最终的字符串。

反序列化过程

  1. 将序列化后的字符串按逗号分割。
  2. 按照层序的顺序,逐个构建二叉树的节点。
  3. 使用队列来辅助构建树的结构,按照层序遍历的方式将节点插入到对应的位置。

代码实现

#include <stdio.h>
#include <stdlib.h>
#include <string.h>// 定义二叉树节点
struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;
};// 定义队列节点
typedef struct QueueNode {struct TreeNode* treeNode;struct QueueNode* next;
} QueueNode;// 定义队列
typedef struct {QueueNode* front;QueueNode* rear;
} Queue;// 创建队列
Queue* createQueue() {Queue* q = (Queue*)malloc(sizeof(Queue));q->front = q->rear = NULL;return q;
}// 判断队列是否为空
int isEmpty(Queue* q) {return q->front == NULL;
}// 入队
void enqueue(Queue* q, struct TreeNode* node) {QueueNode* newNode = (QueueNode*)malloc(sizeof(QueueNode));newNode->treeNode = node;newNode->next = NULL;if (q->rear != NULL) {q->rear->next = newNode;}q->rear = newNode;if (q->front == NULL) {q->front = newNode;}
}// 出队
struct TreeNode* dequeue(Queue* q) {if (isEmpty(q)) {return NULL;}QueueNode* temp = q->front;struct TreeNode* node = temp->treeNode;q->front = q->front->next;if (q->front == NULL) {q->rear = NULL;}free(temp);return node;
}// 释放队列
void freeQueue(Queue* q) {while (!isEmpty(q)) {dequeue(q);}free(q);
}// 序列化二叉树
char* Serialize(struct TreeNode* root) {if (root == NULL) {return "#";}Queue* q = createQueue();enqueue(q, root);char* result = (char*)malloc(10000 * sizeof(char)); // 假设字符串长度足够char* buffer = (char*)malloc(100 * sizeof(char));int len = 0;while (!isEmpty(q)) {struct TreeNode* node = dequeue(q);if (node == NULL) {len += sprintf(result + len, "#,");} else {len += sprintf(result + len, "%d,", node->val);enqueue(q, node->left);enqueue(q, node->right);}}// 去掉最后一个逗号if (len > 0 && result[len - 1] == ',') {result[len - 1] = '\0';} else {result[len] = '\0';}free(buffer);freeQueue(q);return result;
}// 反序列化二叉树
struct TreeNode* Deserialize(char* data) {if (strcmp(data, "#") == 0) {return NULL;}char* token = strtok(data, ",");struct TreeNode* root = (struct TreeNode*)malloc(sizeof(struct TreeNode));root->val = atoi(token);root->left = root->right = NULL;Queue* q = createQueue();enqueue(q, root);while ((token = strtok(NULL, ",")) != NULL) {struct TreeNode* parent = dequeue(q);if (strcmp(token, "#") != 0) {struct TreeNode* leftNode = (struct TreeNode*)malloc(sizeof(struct TreeNode));leftNode->val = atoi(token);leftNode->left = leftNode->right = NULL;parent->left = leftNode;enqueue(q, leftNode);}token = strtok(NULL, ",");if (token == NULL) {break;}if (strcmp(token, "#") != 0) {struct TreeNode* rightNode = (struct TreeNode*)malloc(sizeof(struct TreeNode));rightNode->val = atoi(token);rightNode->left = rightNode->right = NULL;parent->right = rightNode;enqueue(q, rightNode);}}freeQueue(q);return root;
}

代码说明

  1. 队列实现:为了方便按层次遍历二叉树,我们使用队列来存储树的节点。
  2. 序列化函数 Serialize:使用层序遍历对树进行遍历,将节点值加入到结果字符串中。如果节点为空,则用#表示。
  3. 反序列化函数 Deserialize:将序列化后的字符串按逗号分割,依次创建节点并建立左右子树。

复杂度分析

  • 时间复杂度:O(n),其中n是树的节点数。每个节点在序列化和反序列化过程中只被访问一次。
  • 空间复杂度:O(n),需要存储队列中的节点以及序列化后的字符串。

总结

本题考察了二叉树的序列化与反序列化,使用层序遍历来实现序列化和反序列化的方法,保证了在时间和空间复杂度上都能满足要求。这题的整体难度还是不小的,但是最主要的是队列的实现,这个完成,任务就完成一半。至于后面函数的实现,就是研究递归了。

相关文章:

每日一题——序列化二叉树

序列化二叉树 BM39 序列化二叉树题目描述序列化反序列化 示例示例1示例2 解题思路序列化过程反序列化过程 代码实现代码说明复杂度分析总结 BM39 序列化二叉树 题目描述 请实现两个函数&#xff0c;分别用来序列化和反序列化二叉树。二叉树的序列化是将二叉树按照某种遍历方式…...

Transformer+vit原理分析

目录 一、Transformer的核心思想 1. 自注意力机制&#xff08;Self-Attention&#xff09; 2. 多头注意力&#xff08;Multi-Head Attention&#xff09; 二、Transformer的架构 1. 整体结构 2. 编码器层&#xff08;Encoder Layer&#xff09; 3. 解码器层&#xff08;Decoder…...

「AI学习笔记」深度学习的起源与发展:从神经网络到大数据(二)

深度学习&#xff08;DL&#xff09;是现代人工智能&#xff08;AI&#xff09;的核心之一&#xff0c;但它并不是一夜之间出现的技术。从最初的理论提出到如今的广泛应用&#xff0c;深度学习经历了几乎一个世纪的不断探索与发展。今天&#xff0c;我们一起回顾深度学习的历史…...

【漫话机器学习系列】069.哈达马乘积(Hadamard Product)

哈达马乘积&#xff08;Hadamard Product&#xff09; 哈达马乘积&#xff08;Hadamard Product&#xff09;是两个矩阵之间的一种元素级操作&#xff0c;也称为逐元素乘积&#xff08;Element-wise Product&#xff09;。它以矩阵的对应元素相乘为规则&#xff0c;生成一个新…...

2025一区新风口:小波变换+KAN!速占!

今天给大家分享一个能让审稿人眼前一亮&#xff0c;好发一区的idea&#xff1a;小波变换KAN&#xff01; 一方面&#xff1a;KAN刚中稿ICLR25&#xff0c;正是风口上&#xff0c;与小波变换的结合还处于起步阶段&#xff0c;正是红利期&#xff0c;创新空间广阔。 另一方面&a…...

相同的树及延伸题型(C语言详解版)

从LeetCode 100和101看二叉树的比较与对称性判断 今天要讲的是leetcode100.相同的树&#xff0c;并且本文章还会讲到延伸题型leetcode101.对称二叉树。本文章编写用的是C语言&#xff0c;大家主要是学习思路&#xff0c;学习过后可以自己点击链接测试&#xff0c;并且做一些对…...

【Redis】 String 类型的介绍和常用命令

1. 介绍 Redis 中的 key 都是字符串类型Redis 中存储字符串是完全按照二进制流的形式保存的&#xff0c;所以 Redis 是不处理字符集编码的问题&#xff0c;客户端传入的命令中使用的是什么编码就采用什么编码&#xff0c;使得 Redis 能够处理各种类型的数据&#xff0c;包括文…...

LLM - 大模型 ScallingLaws 的设计 100B 预训练方案(PLM) 教程(5)

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/145356022 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 Scaling Laws (缩放法则) 是大模型领域中,用于描述 模型性能(Loss) 与…...

Docker/K8S

文章目录 项目地址一、Docker1.1 创建一个Node服务image1.2 volume1.3 网络1.4 docker compose 二、K8S2.1 集群组成2.2 Pod1. 如何使用Pod(1) 运行一个pod(2) 运行多个pod 2.3 pod的生命周期2.4 pod中的容器1. 容器的生命周期2. 生命周期的回调3. 容器重启策略4. 自定义容器启…...

32、【OS】【Nuttx】OSTest分析(1):stdio测试(二)

背景 接上篇wiki 31、【OS】【Nuttx】OSTest分析&#xff08;1&#xff09;&#xff1a;stdio测试&#xff08;一&#xff09; 继续stdio测试的分析&#xff0c;上篇讲到标准IO端口初始化&#xff0c;单从测试内容来说其实很简单&#xff0c;没啥可分析的&#xff0c;但这几篇…...

git push到远程仓库时无法推送大文件

一、错误 remote: Error: Deny by project hooks setting ‘default’: size of the file ‘scientific_calculator’, is 164 MiB, which has exceeded the limited size (100 MiB) in commit ‘4c91b7e3a04b8034892414d649860bf12416b614’. 二、原因 本地提交过大文件&am…...

Vue.js路由管理与自定义指令深度剖析

Vue.js 是一个强大的前端框架,提供了丰富的功能来帮助开发者构建复杂的单页应用(SPA)。本文将详细介绍 Vue.js 中的自定义指令和路由管理及导航守卫。通过这些功能,你可以更好地控制视图行为和应用导航,从而提升用户体验和开发效率。 1 自定义指令详解 1.1 什么是自定义…...

NVIDIA GPU介绍:概念、序列、核心、A100、H100

概述 入职一家大模型领域创业公司&#xff0c;恶补相关知识。 概念 一些概念&#xff1a; HPC&#xff1a;High Performance Computing&#xff0c;高性能计算SoC&#xff1a;System on Chip&#xff0c;单片系统FLOPS&#xff1a;Floating Point Operations Per Second&am…...

【PyTorch】6.张量运算函数:一键开启!PyTorch 张量函数的宝藏工厂

目录 1. 常见运算函数 个人主页&#xff1a;Icomi 专栏地址&#xff1a;PyTorch入门 在深度学习蓬勃发展的当下&#xff0c;PyTorch 是不可或缺的工具。它作为强大的深度学习框架&#xff0c;为构建和训练神经网络提供了高效且灵活的平台。神经网络作为人工智能的核心技术&…...

C语言练习(31)

有5个学生&#xff0c;每个学生有3门课程的成绩&#xff0c;从键盘输入以上数据&#xff08;包括学号、姓名、3门课程成绩&#xff09;&#xff0c;计算出平均成绩&#xff0c;将原有数据和计算出的平均分数存放在磁盘文件stud中。 设5名学生的学号、姓名和3门课程成绩如下&am…...

什么是长短期记忆网络?

一、概念 长短期记忆网络&#xff08;Long Short-Term Memory, LSTM&#xff09;是一种特殊的循环神经网络&#xff08;RNN&#xff09;&#xff0c;旨在解决标准RNN在处理长序列时的梯度消失和梯度爆炸问题。LSTM通过引入三个门&#xff08;输入门、遗忘门和输出门&#xff09…...

git中有关old mode 100644、new mode 10075的问题解决小结

在 Git 版本控制系统中&#xff0c;文件权限变更是一种常见情况。当你看到类似 old mode 100644 和 new mode 100755 的信息时&#xff0c;这通常表示文件的权限发生了变化。本文将详细解析这种情况&#xff0c;并提供解决方法和注意事项。 问题背景 在 Git 中&#xff0c;文…...

Jenkins上生成的allure report打不开怎么处理

目录 问题背景&#xff1a; 原因&#xff1a; 解决方案&#xff1a; Jenkins上修改配置 通过Groovy脚本在Script Console中设置和修改系统属性 步骤 验证是否清空成功 进一步的定制 也可以使用Nginx去解决 使用逆向代理服务器Nginx&#xff1a; 通过合理调整CSP配置&a…...

JSR303校验教学

1、什么是JSR303校验 JSR是Java Specification Requests的缩写&#xff0c;意思是Java 规范提案。是指向JCP(Java Community Process)提出新增一个标准化技术规范的正式请求。任何人都可以提交JSR&#xff0c;以向Java平台增添新的API和服务。JSR已成为Java界的一个重要标准。…...

使用DeepSeek技巧:提升内容创作效率与质量

一、引言 在当今快节奏的数字时代&#xff0c;内容创作的需求不断增加&#xff0c;无论是企业营销、个人博客还是学术研究&#xff0c;高效且高质量的内容生成变得至关重要。DeepSeek作为一款先进的人工智能写作助手&#xff0c;凭借其强大的语言生成能力&#xff0c;为创作者…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1&#xff09;准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2&#xff09;服务端安装软件&#xff1a;bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...