每日一题——序列化二叉树
序列化二叉树
- BM39 序列化二叉树
- 题目描述
- 序列化
- 反序列化
- 示例
- 示例1
- 示例2
- 解题思路
- 序列化过程
- 反序列化过程
- 代码实现
- 代码说明
- 复杂度分析
- 总结
BM39 序列化二叉树
题目描述
请实现两个函数,分别用来序列化和反序列化二叉树。二叉树的序列化是将二叉树按照某种遍历方式转换为字符串格式,而反序列化则是根据字符串重建出原二叉树。
序列化
二叉树的序列化(Serialize)是指将二叉树转换为字符串,通常我们使用层序遍历的方式将树的节点值逐个保存。在序列化的过程中,用某种符号表示空节点(如#),例如:层序序列化的结果为"{1,2,3,#,#,6,7}"。
反序列化
二叉树的反序列化(Deserialize)是指根据序列化后的字符串重建出二叉树。例如,给定序列化字符串"{1,2,3,#,#,6,7}",我们可以重新构造出与原二叉树相同的树结构。
示例

示例1
输入:
{1,2,3,#,#,6,7}
返回值:
{1,2,3,#,#,6,7}
示例2

输入:
{8,6,10,5,7,9,11}
返回值:
{8,6,10,5,7,9,11}
解题思路
序列化过程
- 使用层序遍历的方式遍历二叉树。
- 将每个节点的值转化为字符串,并用
#表示空节点。 - 将结果以逗号连接形成最终的字符串。
反序列化过程
- 将序列化后的字符串按逗号分割。
- 按照层序的顺序,逐个构建二叉树的节点。
- 使用队列来辅助构建树的结构,按照层序遍历的方式将节点插入到对应的位置。
代码实现
#include <stdio.h>
#include <stdlib.h>
#include <string.h>// 定义二叉树节点
struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;
};// 定义队列节点
typedef struct QueueNode {struct TreeNode* treeNode;struct QueueNode* next;
} QueueNode;// 定义队列
typedef struct {QueueNode* front;QueueNode* rear;
} Queue;// 创建队列
Queue* createQueue() {Queue* q = (Queue*)malloc(sizeof(Queue));q->front = q->rear = NULL;return q;
}// 判断队列是否为空
int isEmpty(Queue* q) {return q->front == NULL;
}// 入队
void enqueue(Queue* q, struct TreeNode* node) {QueueNode* newNode = (QueueNode*)malloc(sizeof(QueueNode));newNode->treeNode = node;newNode->next = NULL;if (q->rear != NULL) {q->rear->next = newNode;}q->rear = newNode;if (q->front == NULL) {q->front = newNode;}
}// 出队
struct TreeNode* dequeue(Queue* q) {if (isEmpty(q)) {return NULL;}QueueNode* temp = q->front;struct TreeNode* node = temp->treeNode;q->front = q->front->next;if (q->front == NULL) {q->rear = NULL;}free(temp);return node;
}// 释放队列
void freeQueue(Queue* q) {while (!isEmpty(q)) {dequeue(q);}free(q);
}// 序列化二叉树
char* Serialize(struct TreeNode* root) {if (root == NULL) {return "#";}Queue* q = createQueue();enqueue(q, root);char* result = (char*)malloc(10000 * sizeof(char)); // 假设字符串长度足够char* buffer = (char*)malloc(100 * sizeof(char));int len = 0;while (!isEmpty(q)) {struct TreeNode* node = dequeue(q);if (node == NULL) {len += sprintf(result + len, "#,");} else {len += sprintf(result + len, "%d,", node->val);enqueue(q, node->left);enqueue(q, node->right);}}// 去掉最后一个逗号if (len > 0 && result[len - 1] == ',') {result[len - 1] = '\0';} else {result[len] = '\0';}free(buffer);freeQueue(q);return result;
}// 反序列化二叉树
struct TreeNode* Deserialize(char* data) {if (strcmp(data, "#") == 0) {return NULL;}char* token = strtok(data, ",");struct TreeNode* root = (struct TreeNode*)malloc(sizeof(struct TreeNode));root->val = atoi(token);root->left = root->right = NULL;Queue* q = createQueue();enqueue(q, root);while ((token = strtok(NULL, ",")) != NULL) {struct TreeNode* parent = dequeue(q);if (strcmp(token, "#") != 0) {struct TreeNode* leftNode = (struct TreeNode*)malloc(sizeof(struct TreeNode));leftNode->val = atoi(token);leftNode->left = leftNode->right = NULL;parent->left = leftNode;enqueue(q, leftNode);}token = strtok(NULL, ",");if (token == NULL) {break;}if (strcmp(token, "#") != 0) {struct TreeNode* rightNode = (struct TreeNode*)malloc(sizeof(struct TreeNode));rightNode->val = atoi(token);rightNode->left = rightNode->right = NULL;parent->right = rightNode;enqueue(q, rightNode);}}freeQueue(q);return root;
}
代码说明
- 队列实现:为了方便按层次遍历二叉树,我们使用队列来存储树的节点。
- 序列化函数
Serialize:使用层序遍历对树进行遍历,将节点值加入到结果字符串中。如果节点为空,则用#表示。 - 反序列化函数
Deserialize:将序列化后的字符串按逗号分割,依次创建节点并建立左右子树。
复杂度分析
- 时间复杂度:
O(n),其中n是树的节点数。每个节点在序列化和反序列化过程中只被访问一次。 - 空间复杂度:
O(n),需要存储队列中的节点以及序列化后的字符串。
总结
本题考察了二叉树的序列化与反序列化,使用层序遍历来实现序列化和反序列化的方法,保证了在时间和空间复杂度上都能满足要求。这题的整体难度还是不小的,但是最主要的是队列的实现,这个完成,任务就完成一半。至于后面函数的实现,就是研究递归了。
相关文章:
每日一题——序列化二叉树
序列化二叉树 BM39 序列化二叉树题目描述序列化反序列化 示例示例1示例2 解题思路序列化过程反序列化过程 代码实现代码说明复杂度分析总结 BM39 序列化二叉树 题目描述 请实现两个函数,分别用来序列化和反序列化二叉树。二叉树的序列化是将二叉树按照某种遍历方式…...
Transformer+vit原理分析
目录 一、Transformer的核心思想 1. 自注意力机制(Self-Attention) 2. 多头注意力(Multi-Head Attention) 二、Transformer的架构 1. 整体结构 2. 编码器层(Encoder Layer) 3. 解码器层(Decoder…...
「AI学习笔记」深度学习的起源与发展:从神经网络到大数据(二)
深度学习(DL)是现代人工智能(AI)的核心之一,但它并不是一夜之间出现的技术。从最初的理论提出到如今的广泛应用,深度学习经历了几乎一个世纪的不断探索与发展。今天,我们一起回顾深度学习的历史…...
【漫话机器学习系列】069.哈达马乘积(Hadamard Product)
哈达马乘积(Hadamard Product) 哈达马乘积(Hadamard Product)是两个矩阵之间的一种元素级操作,也称为逐元素乘积(Element-wise Product)。它以矩阵的对应元素相乘为规则,生成一个新…...
2025一区新风口:小波变换+KAN!速占!
今天给大家分享一个能让审稿人眼前一亮,好发一区的idea:小波变换KAN! 一方面:KAN刚中稿ICLR25,正是风口上,与小波变换的结合还处于起步阶段,正是红利期,创新空间广阔。 另一方面&a…...
相同的树及延伸题型(C语言详解版)
从LeetCode 100和101看二叉树的比较与对称性判断 今天要讲的是leetcode100.相同的树,并且本文章还会讲到延伸题型leetcode101.对称二叉树。本文章编写用的是C语言,大家主要是学习思路,学习过后可以自己点击链接测试,并且做一些对…...
【Redis】 String 类型的介绍和常用命令
1. 介绍 Redis 中的 key 都是字符串类型Redis 中存储字符串是完全按照二进制流的形式保存的,所以 Redis 是不处理字符集编码的问题,客户端传入的命令中使用的是什么编码就采用什么编码,使得 Redis 能够处理各种类型的数据,包括文…...
LLM - 大模型 ScallingLaws 的设计 100B 预训练方案(PLM) 教程(5)
欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/145356022 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 Scaling Laws (缩放法则) 是大模型领域中,用于描述 模型性能(Loss) 与…...
Docker/K8S
文章目录 项目地址一、Docker1.1 创建一个Node服务image1.2 volume1.3 网络1.4 docker compose 二、K8S2.1 集群组成2.2 Pod1. 如何使用Pod(1) 运行一个pod(2) 运行多个pod 2.3 pod的生命周期2.4 pod中的容器1. 容器的生命周期2. 生命周期的回调3. 容器重启策略4. 自定义容器启…...
32、【OS】【Nuttx】OSTest分析(1):stdio测试(二)
背景 接上篇wiki 31、【OS】【Nuttx】OSTest分析(1):stdio测试(一) 继续stdio测试的分析,上篇讲到标准IO端口初始化,单从测试内容来说其实很简单,没啥可分析的,但这几篇…...
git push到远程仓库时无法推送大文件
一、错误 remote: Error: Deny by project hooks setting ‘default’: size of the file ‘scientific_calculator’, is 164 MiB, which has exceeded the limited size (100 MiB) in commit ‘4c91b7e3a04b8034892414d649860bf12416b614’. 二、原因 本地提交过大文件&am…...
Vue.js路由管理与自定义指令深度剖析
Vue.js 是一个强大的前端框架,提供了丰富的功能来帮助开发者构建复杂的单页应用(SPA)。本文将详细介绍 Vue.js 中的自定义指令和路由管理及导航守卫。通过这些功能,你可以更好地控制视图行为和应用导航,从而提升用户体验和开发效率。 1 自定义指令详解 1.1 什么是自定义…...
NVIDIA GPU介绍:概念、序列、核心、A100、H100
概述 入职一家大模型领域创业公司,恶补相关知识。 概念 一些概念: HPC:High Performance Computing,高性能计算SoC:System on Chip,单片系统FLOPS:Floating Point Operations Per Second&am…...
【PyTorch】6.张量运算函数:一键开启!PyTorch 张量函数的宝藏工厂
目录 1. 常见运算函数 个人主页:Icomi 专栏地址:PyTorch入门 在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活的平台。神经网络作为人工智能的核心技术&…...
C语言练习(31)
有5个学生,每个学生有3门课程的成绩,从键盘输入以上数据(包括学号、姓名、3门课程成绩),计算出平均成绩,将原有数据和计算出的平均分数存放在磁盘文件stud中。 设5名学生的学号、姓名和3门课程成绩如下&am…...
什么是长短期记忆网络?
一、概念 长短期记忆网络(Long Short-Term Memory, LSTM)是一种特殊的循环神经网络(RNN),旨在解决标准RNN在处理长序列时的梯度消失和梯度爆炸问题。LSTM通过引入三个门(输入门、遗忘门和输出门)…...
git中有关old mode 100644、new mode 10075的问题解决小结
在 Git 版本控制系统中,文件权限变更是一种常见情况。当你看到类似 old mode 100644 和 new mode 100755 的信息时,这通常表示文件的权限发生了变化。本文将详细解析这种情况,并提供解决方法和注意事项。 问题背景 在 Git 中,文…...
Jenkins上生成的allure report打不开怎么处理
目录 问题背景: 原因: 解决方案: Jenkins上修改配置 通过Groovy脚本在Script Console中设置和修改系统属性 步骤 验证是否清空成功 进一步的定制 也可以使用Nginx去解决 使用逆向代理服务器Nginx: 通过合理调整CSP配置&a…...
JSR303校验教学
1、什么是JSR303校验 JSR是Java Specification Requests的缩写,意思是Java 规范提案。是指向JCP(Java Community Process)提出新增一个标准化技术规范的正式请求。任何人都可以提交JSR,以向Java平台增添新的API和服务。JSR已成为Java界的一个重要标准。…...
使用DeepSeek技巧:提升内容创作效率与质量
一、引言 在当今快节奏的数字时代,内容创作的需求不断增加,无论是企业营销、个人博客还是学术研究,高效且高质量的内容生成变得至关重要。DeepSeek作为一款先进的人工智能写作助手,凭借其强大的语言生成能力,为创作者…...
Chapter03-Authentication vulnerabilities
文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
Java-41 深入浅出 Spring - 声明式事务的支持 事务配置 XML模式 XML+注解模式
点一下关注吧!!!非常感谢!!持续更新!!! 🚀 AI篇持续更新中!(长期更新) 目前2025年06月05日更新到: AI炼丹日志-28 - Aud…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...
【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
