Go反射指南
概念:
官方对此有个非常简明的介绍,两句话耐人寻味:
- 反射提供一种让程序检查自身结构的能力
- 反射是困惑的源泉
第1条,再精确点的描述是“反射是一种检查interface变量的底层类型和值的机制”。 第2条,很有喜感的自嘲,不过往后看就笑不出来了,因为你很可能产生困惑。
reflect 实现了运行时的反射能力,能够让程序操作不同类型的对象。反射包中有两对非常重要的函数和类型,两个函数分别是:
- reflect.TypeOf() 能获取类型信息;
- reflect.ValueOf() 能获取数据的运行时表示;
只有这么简单吗?当然不是,请继续阅读。
引出:
其实了解反射的第一步,应从interface入手,因为反射与接口存在着千丝万缕的关系。
如下是一段interface的源码
type iface struct {tab *itabdata unsafe.Pointer
}// layout of Itab known to compilers
// allocated in non-garbage-collected memory
// Needs to be in sync with
// ../cmd/compile/internal/gc/reflect.go:/^func.dumptypestructs.
type itab struct {inter *interfacetype_type *_typelink *itabbad int32inhash int32 // has this itab been added to hash?fun [1]uintptr // variable sized
}
看不懂也没关系,我对其大致简化一番,从reflect角度再来看看,并思考从iface中看到的字段:
type I interface{// 方法集
}
type iface struct{typ reflect.Type // 储存类型信息val reflect.Value // 储存实际值
}
之所以引出interface,是因为想说interface类型有个(value,type)对,而反射就是检查interface的这个(value, type)对的。具体一点说就是Go提供一组方法提取interface的value,提供另一组方法提取interface的type。
- reflect.Type 提供一组接口处理interface的类型,即(value, type)中的type
- reflect.Value 提供一组接口处理interface的值,即(value, type)中的value
下面会提到反射对象,所谓反射对象即反射包里提供的两种类型的对象。
- reflect.Type 类型对象
- reflect.Value 类型对象
三大法则:
第一法则:
从 interface{} 变量,可以反射出反射对象;
下面示例,看看是如何通过反射获取一个变量的值和类型的:
package mainimport ("fmt""reflect"
)func main() {var x float64 = 3.4t := reflect.TypeOf(x) //t is reflext.Typefmt.Println("type:", t)v := reflect.ValueOf(x) //v is reflext.Valuefmt.Println("value:", v)
}运行如下:
type: float64
value: 3.4
是不是疑惑了,明明是上述是x->reflect类型,却依然说是 interface{} --变为--> reflect类型呢?这是因为,在TypeOf 与 ValueOf 内部,自动将 值类型,转化为了 接口类型。
第二法则:
从反射对象可以获取 interface{} 变量;
package mainimport ("fmt""reflect"
)func main() {var x float64 = 3.4v := reflect.ValueOf(x) //v is reflext.Valuevar y float64 = v.Interface().(float64)fmt.Println("value:", y)
}
1、用reflect.ValueOf(x) 获取,value值。
2、v.Interface() 转化成接口。
3、类型断言转化成,对应的基本类型
第三法则:
要修改反射对象,其值必须可设置。
通过反射可以将interface类型变量转换成反射对象,可以使用该反射对象设置其持有的值。在介绍何谓反射对象可修改前,先看一下失败的例子:
package mainimport ("reflect"
)func main() {var x float64 = 3.4v := reflect.ValueOf(x)v.SetFloat(7.1) // Error: will panic.
}如下代码,通过反射对象v设置新值,会出现panic。报错如下:panic: reflect: reflect.Value.SetFloat using unaddressable value
错误原因即是v是不可修改的。
反射对象失败,取决于是否可以修改其储存的值。回想一下函数传参时,是传值还是传址,就不难理解上例中为何失败。
上例中,传入 reflect.ValueOf() 函数的其实是x的值,而非x本身。即通过v修改其值是无法影响x的,也即是无效的修改,所以 golang 会报错。
想到此处,即可明白,如果构建v时使用x的地址就可实现修改了,但此时v代表的是指针地址,我们要设置的是指针所指向的内容,也即我们想要修改的是*v。 那怎么通过v修改x的值呢?
reflect.Value 提供了 Elem() 方法,可以获得指针向指向的Value 。看如下代码:
package mainimport (
"reflect""fmt"
)func main() {var x float64 = 3.4v := reflect.ValueOf(&x)v.Elem().SetFloat(7.1)fmt.Println("x :", v.Elem().Interface())
}
1、调用reflect.ValueOf 获取变量指针。
2、调用 reflect.Value.Elem 获取指针指向的变量。
3、调用 reflect.Value.SetFloat() 更新变量。
总结:
以上为本篇博客精华内容,如有不妥,请及时私信联系我,斟酌之后必加以纠正。
待后续深入学习时,会转回继续修改。
参考内容:
1、《Go专家编程》
2、《Go语言设计与实践》
相关文章:
Go反射指南
概念: 官方对此有个非常简明的介绍,两句话耐人寻味: 反射提供一种让程序检查自身结构的能力反射是困惑的源泉 第1条,再精确点的描述是“反射是一种检查interface变量的底层类型和值的机制”。 第2条,很有喜感的自嘲…...
Fullcalendar @fullcalendar/react 样式错乱丢失问题和导致页面卡顿崩溃问题
问题描述: 我使用 fullcalendar的react版本时,出现了一个诡异的问题,当我切换到 一个iframe页面时(整个页面是一个iframe嵌入的),再切换回来日历的样式丢失了!不仅丢失了样式还导致页面崩溃了&…...
【电工基础】4.低压电器元件,漏电保护器,熔断器,中间继电器
一。漏电保护器 1.使用区域 我们在家用总开关上使用空气开关(断路器),其余的厨房卧室为漏电保护器。 2.漏电保护器的简介 1.漏电:就是流入的电流和流出的电流不等,意味着电路回路中还有其它分支,可能是电流通过人体进…...
有限元分析学习——Anasys Workbanch第一阶段笔记梳理
第一阶段笔记主要源自于哔哩哔哩《ANSYS-workbench 有限元分析应用基础教程》 张晔 主要内容导图: 笔记导航如下: Anasys Workbanch第一阶段笔记(1)基本信息与结果解读_有限元分析变形比例-CSDN博客 Anasys Workbanch第一阶段笔记(2)网格单元与应力奇…...
C++中常用的十大排序方法之1——冒泡排序
成长路上不孤单😊😊😊😊😊😊 【😊///计算机爱好者😊///持续分享所学😊///如有需要欢迎收藏转发///😊】 今日分享关于C中常用的排序方法之——冒泡排序的相关…...
vscode+WSL2(ubuntu22.04)+pytorch+conda+cuda+cudnn安装系列
最近在家过年闲的没事,于是研究起深度学习开发工具链的配置和安装,之前欲与天公试比高,尝试在win上用vscodecuda11.6vs2019的cl编译器搭建cuda c编程环境,最后惨败,沦为笑柄,痛定思痛,这次直接和…...
手撕Diffusion系列 - 第十一期 - lora微调 - 基于Stable Diffusion(代码)
手撕Diffusion系列 - 第十一期 - lora微调 - 基于Stable Diffusion(代码) 目录 手撕Diffusion系列 - 第十一期 - lora微调 - 基于Stable Diffusion(代码)Stable Diffusion 原理图Stable Diffusion的原理解释Stable Diffusion 和Di…...
【Block总结】OutlookAttention注意力,捕捉细节和局部特征|即插即用
论文信息 标题: VOLO: Vision Outlooker for Visual Recognition作者: Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, Shuicheng Yan代码链接: https://github.com/sail-sg/volo论文链接: https://arxiv.org/pdf/2106.13112 创新点 前景注意力机制: VOLO引入了一种称为“…...
网络攻防实战指北专栏讲解大纲与网络安全法
专栏 本专栏为网络攻防实战指北,大纲如下所示 进度:目前已更完准备篇、HTML基础 计划:所谓基础不牢,地动山摇。所以下一步将持续更新基础篇内容 讲解信息安全时,结合《中华人民共和国网络安全法》(以下简…...
【已解决】windows7虚拟机安装VMtools频繁报错
为了在虚拟机VMware中安装win7,题主先在网上下载了windows7 professional版本的镜像,在vmware中安装vmtools时报错,信息如下 (安装程序无法继续,本程序需要您将此虚拟机上安装的操作系统更新到SP1) 然后就…...
蓝桥杯模拟算法:多项式输出
P1067 [NOIP2009 普及组] 多项式输出 - 洛谷 | 计算机科学教育新生态 这道题是一道模拟题,我们需要分情况讨论,我们需要做一下分类讨论 #include <iostream> #include <cstdlib> using namespace std;int main() {int n;cin >> n;for…...
冲刺蓝桥杯之速通vector!!!!!
文章目录 知识点创建增删查改 习题1习题2习题3习题4:习题5: 知识点 C的STL提供已经封装好的容器vector,也可叫做可变长的数组,vector底层就是自动扩容的顺序表,其中的增删查改已经封装好 创建 const int N30; vecto…...
知识管理平台在数字经济时代推动企业智慧决策与知识赋能的路径分析
内容概要 在数字经济时代,知识管理平台被视为企业智慧决策与知识赋能的关键工具。其核心作用在于通过高效地整合、存储和分发企业内部的知识资源,促进信息的透明化与便捷化,使得决策者能够在瞬息万变的市场环境中迅速获取所需信息。这不仅提…...
IT服务管理平台(ITSM):构建高效运维体系的基石
IT服务管理平台(ITSM):构建高效运维体系的基石 在数字化转型浪潮的推动下,企业对IT服务的依赖日益加深,如何高效管理和优化IT服务成为企业面临的重要课题。IT服务管理平台(ITSM)应运而生,以其系统化的管理方法和工具,助力企业实现IT服务的规范化、高效化和智能化。本…...
[EAI-026] DeepSeek-VL2 技术报告解读
Paper Card 论文标题:DeepSeek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding 论文作者:Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang Ma, Chengyue Wu, Bin…...
深度学习:基于MindNLP的RAG应用开发
什么是RAG? RAG(Retrieval-Augmented Generation,检索增强生成) 是一种结合检索(Retrieval)和生成(Generation)的技术,旨在提升大语言模型(LLM)生…...
【C语言】static关键字的三种用法
【C语言】static关键字的三种用法 C语言中的static关键字是一个存储类说明符,它可以用来修饰变量和函数。static关键字的主要作用是控制变量或函数的生命周期和可见性。以下是static关键字的一些主要用法和含义: 局部静态变量: 当static修饰…...
STM32 PWMI模式测频率占空比
接线图: PWMI基本结构 代码配置: 与上一章输入捕获代码一样,根据结构体,需要在输入捕获单元再配置一个通道。我们调用一个函数 这个函数可以给结构体赋值,当我们定义了一遍结构体参数,再调用这个函数&…...
神经网络|(四)概率论基础知识-古典概型
【1】引言 前序学习了线性回归的基础知识,了解到最小二乘法可以做线性回归分析,但为何最小二乘法如此准确,这需要从概率论的角度给出依据。 因此从本文起,需要花一段时间来回顾概率论的基础知识。 【2】古典概型 古典概型是我…...
ubuntu20.04.6下运行VLC-Qt例子simple-player
下载examples-master.zip(https://github.com/vlc-qt/examples),编译运行simple-player 参考链接: https://blog.csdn.net/szn1316159505/article/details/143743735 本文运行环境 Qt 5.15.2 Qt creator 5.0.2 主要步骤…...
docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...
vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
【Java学习笔记】BigInteger 和 BigDecimal 类
BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点:传参类型必须是类对象 一、BigInteger 1. 作用:适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...
解析两阶段提交与三阶段提交的核心差异及MySQL实现方案
引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC…...
前端开发者常用网站
Can I use网站:一个查询网页技术兼容性的网站 一个查询网页技术兼容性的网站Can I use:Can I use... Support tables for HTML5, CSS3, etc (查询浏览器对HTML5的支持情况) 权威网站:MDN JavaScript权威网站:JavaScript | MDN...
41道Django高频题整理(附答案背诵版)
解释一下 Django 和 Tornado 的关系? Django和Tornado都是Python的web框架,但它们的设计哲学和应用场景有所不同。 Django是一个高级的Python Web框架,鼓励快速开发和干净、实用的设计。它遵循MVC设计,并强调代码复用。Django有…...
