Autogen_core: test_code_executor.py
目录
- 代码
- 代码解释
代码
import textwrapimport pytest
from autogen_core.code_executor import (Alias,FunctionWithRequirements,FunctionWithRequirementsStr,ImportFromModule,
)
from autogen_core.code_executor._func_with_reqs import build_python_functions_file
from pandas import DataFrame, concatdef template_function() -> DataFrame: # type: ignoredata1 = {"name": ["John", "Anna"],"location": ["New York", "Paris"],"age": [24, 13],}data2 = {"name": ["Peter", "Linda"],"location": ["Berlin", "London"],"age": [53, 33],}df1 = DataFrame.from_dict(data1) # type: ignoredf2 = DataFrame.from_dict(data2) # type: ignorereturn concat([df1, df2]) # type: ignorefunction = FunctionWithRequirements.from_callable( # type: ignoretemplate_function,["pandas"],[ImportFromModule("pandas", ["DataFrame", "concat"])],)function
FunctionWithRequirements(func=<function template_function at 0x000002ACEFA96FC0>, python_packages=['pandas'], global_imports=[ImportFromModule(module='pandas', imports=('DataFrame', 'concat'))])
functions_module = build_python_functions_file([function])
functions_module
'from pandas import DataFrame, concat\n\ndef template_function() -> DataFrame: # type: ignore\n data1 = {\n "name": ["John", "Anna"],\n "location": ["New York", "Paris"],\n "age": [24, 13],\n }\n data2 = {\n "name": ["Peter", "Linda"],\n "location": ["Berlin", "London"],\n "age": [53, 33],\n }\n df1 = DataFrame.from_dict(data1) # type: ignore\n df2 = DataFrame.from_dict(data2) # type: ignore\n return concat([df1, df2]) # type: ignore\n\n\n'
assert "from pandas import DataFrame, concat" in functions_module
function2: FunctionWithRequirementsStr = FunctionWithRequirements.from_str(textwrap.dedent("""def template_function2():return pd.Series([1, 2])"""),"pandas",[Alias("pandas", "pd")],)function2
FunctionWithRequirementsStr(func='\ndef template_function2():\n return pd.Series([1, 2])\n', compiled_func=<function template_function2 at 0x000002ACA0655A80>, _func_name='template_function2', python_packages='pandas', global_imports=[Alias(name='pandas', alias='pd')])
functions_module2 = build_python_functions_file([function2])
functions_module2
'import pandas as pd\n\n\ndef template_function2():\n return pd.Series([1, 2])\n\n\n'
assert "import pandas as pd" in functions_module2
代码解释
上面的代码主要展示了如何使用 autogen_core 库中的 FunctionWithRequirements 类来定义和管理具有依赖项的 Python 函数,并将这些函数及其依赖项打包成一个可执行的 Python 模块。
代码分为几个部分:
-
定义模板函数:
- 定义了一个名为
template_function的函数,它创建两个字典data1和data2,然后将这些字典转换为 pandas DataFrame 对象,并将它们合并成一个 DataFrame 对象返回。
- 定义了一个名为
-
创建 FunctionWithRequirements 对象:
- 使用
FunctionWithRequirements.from_callable方法,将template_function函数及其依赖项(这里是 pandas 库)封装成一个FunctionWithRequirements对象。这个对象包含了函数代码、所需的 Python 包和所需的导入项。
- 使用
-
生成 Python 函数文件:
- 使用
build_python_functions_file函数,将FunctionWithRequirements对象转换成一个包含函数代码和必要导入语句的字符串。这个字符串可以被保存为一个 Python 文件,并作为独立模块运行。
- 使用
-
断言检查:
- 通过断言确保生成的 Python 模块包含正确的导入语句。
-
定义第二个模板函数:
- 定义了一个名为
template_function2的函数,它返回一个 pandas Series 对象。这个函数使用FunctionWithRequirements.from_str方法从字符串定义,并使用 pandas 别名pd。
- 定义了一个名为
-
生成第二个 Python 函数文件:
- 类似于之前的步骤,将
template_function2函数及其依赖项打包成一个 Python 模块。
- 类似于之前的步骤,将
-
断言检查:
- 通过断言确保生成的第二个 Python 模块包含正确的导入语句。
总的来说,这段代码演示了如何使用 autogen_core 库来管理和打包具有依赖项的 Python 函数,以便它们可以在不同的环境中重用和执行。这可以用于自动化代码生成、模块化代码复用、简化函数部署等场景。
参考链接:
https://github.com/microsoft/autogen/blob/main/python/packages/autogen-core/tests/test_code_executor.py
相关文章:
Autogen_core: test_code_executor.py
目录 代码代码解释 代码 import textwrapimport pytest from autogen_core.code_executor import (Alias,FunctionWithRequirements,FunctionWithRequirementsStr,ImportFromModule, ) from autogen_core.code_executor._func_with_reqs import build_python_functions_file f…...
从0开始使用面对对象C语言搭建一个基于OLED的图形显示框架
目录 前言 环境介绍 代码与动机 架构设计,优缺点 博客系列指引 前言 笔者前段时间花费了一周,整理了一下自从TM1637开始打算的,使用OLED来搭建一个通用的显示库的一个工程。笔者的OLED库已经开源到Github上了,地址在…...
Java实现.env文件读取敏感数据
文章目录 1.common-env-starter模块1.目录结构2.DotenvEnvironmentPostProcessor.java 在${xxx}解析之前执行,提前读取配置3.EnvProperties.java 这里的path只是为了代码提示4.EnvAutoConfiguration.java Env模块自动配置类5.spring.factories 自动配置和注册Enviro…...
Go反射指南
概念: 官方对此有个非常简明的介绍,两句话耐人寻味: 反射提供一种让程序检查自身结构的能力反射是困惑的源泉 第1条,再精确点的描述是“反射是一种检查interface变量的底层类型和值的机制”。 第2条,很有喜感的自嘲…...
Fullcalendar @fullcalendar/react 样式错乱丢失问题和导致页面卡顿崩溃问题
问题描述: 我使用 fullcalendar的react版本时,出现了一个诡异的问题,当我切换到 一个iframe页面时(整个页面是一个iframe嵌入的),再切换回来日历的样式丢失了!不仅丢失了样式还导致页面崩溃了&…...
【电工基础】4.低压电器元件,漏电保护器,熔断器,中间继电器
一。漏电保护器 1.使用区域 我们在家用总开关上使用空气开关(断路器),其余的厨房卧室为漏电保护器。 2.漏电保护器的简介 1.漏电:就是流入的电流和流出的电流不等,意味着电路回路中还有其它分支,可能是电流通过人体进…...
有限元分析学习——Anasys Workbanch第一阶段笔记梳理
第一阶段笔记主要源自于哔哩哔哩《ANSYS-workbench 有限元分析应用基础教程》 张晔 主要内容导图: 笔记导航如下: Anasys Workbanch第一阶段笔记(1)基本信息与结果解读_有限元分析变形比例-CSDN博客 Anasys Workbanch第一阶段笔记(2)网格单元与应力奇…...
C++中常用的十大排序方法之1——冒泡排序
成长路上不孤单😊😊😊😊😊😊 【😊///计算机爱好者😊///持续分享所学😊///如有需要欢迎收藏转发///😊】 今日分享关于C中常用的排序方法之——冒泡排序的相关…...
vscode+WSL2(ubuntu22.04)+pytorch+conda+cuda+cudnn安装系列
最近在家过年闲的没事,于是研究起深度学习开发工具链的配置和安装,之前欲与天公试比高,尝试在win上用vscodecuda11.6vs2019的cl编译器搭建cuda c编程环境,最后惨败,沦为笑柄,痛定思痛,这次直接和…...
手撕Diffusion系列 - 第十一期 - lora微调 - 基于Stable Diffusion(代码)
手撕Diffusion系列 - 第十一期 - lora微调 - 基于Stable Diffusion(代码) 目录 手撕Diffusion系列 - 第十一期 - lora微调 - 基于Stable Diffusion(代码)Stable Diffusion 原理图Stable Diffusion的原理解释Stable Diffusion 和Di…...
【Block总结】OutlookAttention注意力,捕捉细节和局部特征|即插即用
论文信息 标题: VOLO: Vision Outlooker for Visual Recognition作者: Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, Shuicheng Yan代码链接: https://github.com/sail-sg/volo论文链接: https://arxiv.org/pdf/2106.13112 创新点 前景注意力机制: VOLO引入了一种称为“…...
网络攻防实战指北专栏讲解大纲与网络安全法
专栏 本专栏为网络攻防实战指北,大纲如下所示 进度:目前已更完准备篇、HTML基础 计划:所谓基础不牢,地动山摇。所以下一步将持续更新基础篇内容 讲解信息安全时,结合《中华人民共和国网络安全法》(以下简…...
【已解决】windows7虚拟机安装VMtools频繁报错
为了在虚拟机VMware中安装win7,题主先在网上下载了windows7 professional版本的镜像,在vmware中安装vmtools时报错,信息如下 (安装程序无法继续,本程序需要您将此虚拟机上安装的操作系统更新到SP1) 然后就…...
蓝桥杯模拟算法:多项式输出
P1067 [NOIP2009 普及组] 多项式输出 - 洛谷 | 计算机科学教育新生态 这道题是一道模拟题,我们需要分情况讨论,我们需要做一下分类讨论 #include <iostream> #include <cstdlib> using namespace std;int main() {int n;cin >> n;for…...
冲刺蓝桥杯之速通vector!!!!!
文章目录 知识点创建增删查改 习题1习题2习题3习题4:习题5: 知识点 C的STL提供已经封装好的容器vector,也可叫做可变长的数组,vector底层就是自动扩容的顺序表,其中的增删查改已经封装好 创建 const int N30; vecto…...
知识管理平台在数字经济时代推动企业智慧决策与知识赋能的路径分析
内容概要 在数字经济时代,知识管理平台被视为企业智慧决策与知识赋能的关键工具。其核心作用在于通过高效地整合、存储和分发企业内部的知识资源,促进信息的透明化与便捷化,使得决策者能够在瞬息万变的市场环境中迅速获取所需信息。这不仅提…...
IT服务管理平台(ITSM):构建高效运维体系的基石
IT服务管理平台(ITSM):构建高效运维体系的基石 在数字化转型浪潮的推动下,企业对IT服务的依赖日益加深,如何高效管理和优化IT服务成为企业面临的重要课题。IT服务管理平台(ITSM)应运而生,以其系统化的管理方法和工具,助力企业实现IT服务的规范化、高效化和智能化。本…...
[EAI-026] DeepSeek-VL2 技术报告解读
Paper Card 论文标题:DeepSeek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding 论文作者:Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang Ma, Chengyue Wu, Bin…...
深度学习:基于MindNLP的RAG应用开发
什么是RAG? RAG(Retrieval-Augmented Generation,检索增强生成) 是一种结合检索(Retrieval)和生成(Generation)的技术,旨在提升大语言模型(LLM)生…...
【C语言】static关键字的三种用法
【C语言】static关键字的三种用法 C语言中的static关键字是一个存储类说明符,它可以用来修饰变量和函数。static关键字的主要作用是控制变量或函数的生命周期和可见性。以下是static关键字的一些主要用法和含义: 局部静态变量: 当static修饰…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...
新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
3-11单元格区域边界定位(End属性)学习笔记
返回一个Range 对象,只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意:它移动的位置必须是相连的有内容的单元格…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...
2025季度云服务器排行榜
在全球云服务器市场,各厂商的排名和地位并非一成不变,而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势,对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析: 一、全球“三巨头”…...
