当前位置: 首页 > news >正文

论文阅读:Realistic Noise Synthesis with Diffusion Models

这篇文章是 2025 AAAI 的一篇工作,主要介绍的是用扩散模型实现对真实噪声的仿真模拟

Abstract

深度去噪模型需要大量来自现实世界的训练数据,而获取这些数据颇具挑战性。当前的噪声合成技术难以准确模拟复杂的噪声分布。我们提出一种新颖的逼真噪声合成扩散器(Realistic Noise Synthesis Diffusor,RNSD)方法,利用扩散模型来应对这些挑战。通过将相机设置编码到一种时间感知的相机条件仿射调制(time - aware camera - conditioned affine modulation,TCCAM)中,RNSD 能够在各种相机条件下生成更逼真的噪声分布。此外,RNSD 集成了一个多尺度内容感知模块(multi - scale content - aware module,MCAM),使得能够生成在多个频率上具有空间相关性的结构化噪声。我们还引入了深度图像先验采样(Deep Image Prior Sampling,DIPS),这是一种基于深度图像先验的可学习采样序列,它在显著加速采样过程的同时,还能保持合成噪声的高质量。大量实验表明,我们的 RNSD 方法在多个指标下合成逼真噪声以及提升图像去噪性能方面,显著优于现有技术。

Introduction

在深度学习中,图像去噪是一个不适定问题,通常需要使用大量的数据对进行有监督训练。在 RGB 色彩空间中,一幅含噪图像 y \mathbf{y} y 可以通过以下公式建模为其无噪版本 s \mathbf{s} s 加上经过图像信号处理(ISP)后的噪声 n \mathbf{n} n

y = I S P ( s + n ) (1) \mathbf{y} = \mathbf{ISP}(\mathbf{s} + \mathbf{n}) \tag{1} y=ISP(s+n)(1)

与 RAW 格式图像中可线性建模且空间独立的噪声不同,RGB 色彩空间中的噪声呈现出以下特点:
不规则且多样的噪声分布:图像信号处理(ISP)的后处理参数,如自动白平衡(AWB)、色彩校正矩阵(CCM)和伽马校正(GAMMA),由于其依赖于传感器、感光度(ISO)、场景和曝光设置,会导致噪声在不同场景、通道、ISO 等级以及像素间呈现出非均匀的变化。
噪声的结构与空间相关性:与空间相关的 ISP 操作,包括去马赛克、降噪和锐化等,会给噪声引入局部结构模式,从而增强了噪声与信噪比之间的相关性。

大多数数据集依赖多帧平均法,这不仅获取难度大,而且无法提供多样的噪声类型,也不能解决结构性噪声问题。一些方法将噪声建模为高斯白噪声,忽略了真实噪声中存在的空间相关性。基于生成对抗网络(GAN)的方法试图对真实噪声分布进行建模,但由于缺乏严格的似然函数,常常面临不稳定性和模式崩溃问题,导致生成的噪声分布与真实噪声分布不匹配。相比之下,扩散模型因其严格的似然推导,在图像生成方面表现得更为稳定且多样。然而,它们尚未成功应用于合成噪声生成,这可能是由于针对具有空间相关性的复杂噪声分布,其条件设计不够完善。

在本文中,我们引入了逼真噪声合成扩散器(Realistic Noise Synthesize Diffusor, RNSD),这是一种基于扩散模型来合成逼真 RGB 噪声数据的新方法。RNSD 能够借助来自各种公开数据集的干净图像,生成大量与真实世界噪声分布极为相似的噪声图像。RNSD 生成的增强数据,在降噪和图像保真度方面,都显著提升了现有去噪模型的性能。

具体而言,RNSD 使用真实的含噪图像 y \mathbf{y} y 作为初始状态 x 0 \mathbf{x}_0 x0 来构建用于噪声生成的扩散模型。为了有效适应多样的噪声分布,我们提出了一种时间感知相机条件仿射调制(time - aware camera - conditioned affine modulation),称为 TCCAM。该模块对不同的相机设置进行编码,并在采样过程中采用时间自适应条件仿射变换,使得 RNSD 能够合成多样化且逼真的噪声。

此外,我们构建了一个多尺度内容感知模块(multi - scale content - aware module,简称 MCAM),它将干净图像的多尺度引导信息整合到扩散网络中。该模块能有效地引导生成与信号相关且具有空间相关性的噪声。

基于深度图像先验理论,即网络先学习低频成分,然后学习高频成分,我们开发了深度图像先验采样(Deep Image Prior Sampling,DIPS)方法。与去噪扩散隐式模型(DDIM)不同,DIPS 采用基于蒸馏的单步模型和衰减采样,将原本 1000 步的模型缩减至仅 5 步,而准确率仅损失 4%,显著提高了采样效率。
综上所述,我们的主要贡献如下:

  • 我们首次提出了一种基于扩散模型的真实噪声数据合成方法 RNSD
  • 我们设计了时间感知相机条件仿射调制(TCCAM),它能够更好地控制生成噪声的分布和强度。
  • 通过构建多尺度内容感知模块(MCAM),引入了多频信息的耦合,使得能够生成更逼真的、具有空间相关性的噪声。
  • 深度图像先验采样(DIPS):利用网络先学习低频成分再学习高频成分的深度图像先验特性,与 DDIM 相比,DIPS 将 1000 步的模型缩减至仅 5 步,而准确率仅损失 4%,从而提高了采样效率。
  • 我们的方法在多个基准测试和指标上取得了领先的成果,显著提升了去噪模型的性能。

Methodology

在这里插入图片描述

  • 图 2:(a) 通过扩散产生噪声的流程。(b) 我们的时空交叉注意力记忆模块(TCCAM)的流程。
    © 我们设计的带有多尺度交叉注意力模块(MCAM)的 UNet 架构

  • 我们提出了一种新颖的基于扩散的方法来合成逼真的噪声数据,称为 “基于扩散的真实噪声合成”(RNSD,见图 2(a))。

  • 我们的方法以真实含噪图像作为初始条件,并融入了时间感知相机条件仿射调制(TCCAM,见图 2(b))来控制结果。

  • 此外,我们引入了一个多尺度内容感知模块(MCAM,见图 2(c)),以引导生成与信号相关的噪声。

  • 最后,我们基于深度图像先验(DIPS,Ulyanov、Vedaldi 和 Lempitsky,2018 年)设计了一种可学习的加速采样方法,如算法 2 所示。

Noise Generation via Diffusion

传统的扩散模型通常在无噪声的风格数据上进行训练,这种模型能够从任意高斯噪声分布中采样出目标域图像。相比之下,我们将具有真实噪声分布的图像视为目标域图像。如图 2(a)所示,通过用具有真实噪声分布的数据 y \mathbf{y} y 替换 x 0 \mathbf{x}_0 x0,并经过简单设置,扩散模型就能从任意高斯噪声分布中采样出真实噪声。
具体而言,我们采用去噪扩散概率模型(DDPM,Ho、Jain 和 Abbeel,2020)的概率模型。在正向过程中,使用一个 T T T 步的马尔可夫链来最小化先验概率 q ( x T ∣ x 0 ) q(\mathbf{x}_T|\mathbf{x}_0) q(xTx0),也就是将 x 0 \mathbf{x}_0 x0 扩散为具有方差噪声强度 β t \beta_t βt 的纯高斯分布 x T \mathbf{x}_T xT

q ( x T ∣ x 0 ) = ∏ t = 1 T q ( x t ∣ x t − 1 ) q ( x t ∣ x t − 1 ) = N ( x t ; 1 − β t x t − 1 , β t I ) (2) \begin{aligned} q(\mathbf{x}_T|\mathbf{x}_0)&=\prod_{t = 1}^{T}q(\mathbf{x}_t|\mathbf{x}_{t - 1})\\ q(\mathbf{x}_t|\mathbf{x}_{t - 1})&=\mathcal{N}(\mathbf{x}_t;\sqrt{1-\beta_t}\mathbf{x}_{t - 1},\beta_t\mathbf{I}) \end{aligned} \tag{2} q(xTx0)q(xtxt1)=t=1Tq(xtxt1)=N(xt;1βt xt1,βtI)(2)

其中, I \mathbf{I} I 是单位协方差矩阵,对于相邻的两个步骤,借助重参数化, x t \mathbf{x}_t xt 可以看作是从先验分布 $q(\mathbf{x}t | \mathbf{x}{t-1}) $ 中采样得到的,该分布被视为由 x t − 1 \mathbf{x}_{t-1} xt1 β t \beta_t βt 形成的高斯分布。

一般的采样过程是通过反向求解高斯马尔可夫链过程得到的,将其视为联合概率分布 p θ ( x 0 : T ) p_{\theta}(\mathbf{x}_{0:T}) pθ(x0:T) ,这可以理解为从上述高斯分布 x T \mathbf{x}_T xT 逐步去噪以获得采样结果 x 0 \mathbf{x}_0 x0

p θ ( x 0 : T ) = p ( x T ) ∏ t = 1 T p θ ( x t − 1 ∣ x t ) p θ ( x t − 1 ∣ x t ) = N ( x t − 1 ; μ θ ( x t , t ) , Σ t ) (3) \begin{aligned} p_{\theta}(\mathbf{x}_{0:T})&=p(\mathbf{x}_T)\prod_{t = 1}^{T}p_{\theta}(\mathbf{x}_{t - 1}|\mathbf{x}_t)\\ p_{\theta}(\mathbf{x}_{t - 1}|\mathbf{x}_t)&=\mathcal{N}(\mathbf{x}_{t - 1};\mu_{\theta}(\mathbf{x}_t,t),\Sigma_t) \end{aligned} \tag{3} pθ(x0:T)pθ(xt1xt)=p(xT)t=1Tpθ(xt1xt)=N(xt1;μθ(xt,t),Σt)(3)

其中 μ θ \mu_{\theta} μθ 是由网络估计的后验分布的均值, Σ t \Sigma_{t} Σt 是通过 β t \beta_t βt 正向计算得到的方差。我们引入了额外的信息,即干净图像 s \mathbf{s} s 和相机设置信息 c s \mathbf{cs} cs,以使整个过程更具可控性。从数学角度来看,该过程为:

p θ ( x t − 1 ∣ x t ) = N ( x t − 1 ; μ t , Σ t ) μ t = μ θ ( x t , s , c s , t ) (4) \begin{aligned} p_{\theta}(\mathbf{x}_{t - 1}|\mathbf{x}_t)&=\mathcal{N}(\mathbf{x}_{t - 1};\mu_{\mathbf{t}},\Sigma_t)\\ \mu_{\mathbf{t}}&=\mu_{\theta}(\mathbf{x}_t, s, \mathbf{cs}, t) \end{aligned} \tag{4} pθ(xt1xt)μt=N(xt1;μt,Σt)=μθ(xt,s,cs,t)(4)

考虑到相机设置( c s \mathbf{cs} cs)信息在不同采样步骤中的影响变化以及 RGB 域中噪声的空间相关性,我们制定了增强的条件机制 —— 时间感知相机条件仿射调制(TCCAM)和多尺度内容感知模块(MCAM),以实现噪声生成模块与基于扩散的图像采样框架之间更紧密的耦合。

TCCAM: Time-aware Camera Conditioned Affine Modulation
  • 算法 1:
    在这里插入图片描述

如算法 1 所示,常规的扩散模型学习网络参数 ϵ θ \epsilon_{\theta} ϵθ,以便在正向过程中从 x 0 \mathbf{x}_0 x0 x t \mathbf{x}_t xt 预测添加的噪声分量 ϵ t \epsilon_{t} ϵt。然而,真实的噪声分布由多种因素决定,包括 ISO 增益、快门速度、色温、亮度等。在不区分不同条件下的噪声分布的情况下,基于空间光度变化、ISO 变化和传感器变化,从复杂噪声中学习一种通用分布是具有挑战性的。
根本问题在于,噪声分布在不同条件下差异很大。例如,不同传感器的噪声可能呈现出完全不同的分布。在学习过程中,网络倾向于收敛到数据集的总体期望,从而导致固定模式的噪声模式,这使得生成的噪声与目标噪声之间存在差异。为了解决这个问题,我们引入了算法 1 中所示的五个因素。

c s = ϕ ( i s o , s s , s t , c t , b m ) (5) \mathbf{cs} = \phi (iso, ss, st, ct, bm) \tag{5} cs=ϕ(iso,ss,st,ct,bm)(5)

其中,iso 是感光度(ISO),ss 是快门速度,st 是传感器类型,ct 是色温,bm 是亮度模式。这些因素通过一种编码方法( ϕ \phi ϕ)被嵌入,作为相机设置 c s \mathbf{cs} cs 的特征向量,以控制噪声生成。这种显式先验缩小了网络的学习范围,使其能够逼近更复杂多变的噪声分布。相机设置的影响应该随采样步骤而变化。例如,与图像信号处理器(ISP)高度相关的传感器类型(st)决定了噪声的基本形式,其影响通常与图像内容中的高频信息相关联。当 t t t T T T 0 0 0 进行采样,从低频到高频恢复图像内容时,相机设置的影响逐渐增大。为了解决这个问题,我们提出了一种具有动态设置机制的时间感知相机条件仿射调制(TCCAM),其中不同因素的权重随采样步骤而变化。如图 2(b)所示,该过程如下:

γ , β = M L P 3 ( M L P 1 ( s i n u _ p o s ( t ) ) + M L P 2 ( c s ) ) F o u t p u t = γ ∗ F i n p u t + β (6) \begin{aligned} \gamma, \beta&=MLP_3(MLP_1(sinu\_pos(t)) + MLP_2(\mathbf{c}_s))\\ \mathbf{F}_{output}&=\gamma * \mathbf{F}_{input}+\beta \end{aligned} \tag{6} γ,βFoutput=MLP3(MLP1(sinu_pos(t))+MLP2(cs))=γFinput+β(6)

其中,使用多层感知器(MLP)将相机设置与采用正弦位置编码(sinu_pos)的采样步骤一起进行编码,以便在 UNet 的每一层生成仿射参数 β \beta β γ \gamma γ。这种方法通过对 UNet 中每一层的特征 F i n p u t \mathbf{F}_{input} Finput 应用仿射变换,实现了一种动态设置影响机制。

MCAM: Multi-scale Content-aware Module

真实的噪声分布与图像内容有着内在的联系,由于光子捕获和图像信号处理器(ISP)的处理,它在不同亮度区域会有所不同。受周等人(Zhou 等人,2020 年)关于噪声空间频率特性见解的启发,我们提出了一个多尺度内容感知模块(MCAM,见图 2(c)),用于对不同频率下噪声 - 图像的耦合进行建模。从数学角度来看,我们的方法如下:

F x t i = e n c o d e r i ( x t ) F s i = e n c o d e r i ( s ) , i = 1 , 2 , 3 F o i = d e c o d e r i ( C o n c a t ( F i , F s i , F x t i ) ) (7) \begin{aligned} \mathbf{F}_{\mathbf{x}_{t_i}}&=encoder_i(\mathbf{x}_t)\\ \mathbf{F}_{\mathbf{s}_i}&=encoder_i(\mathbf{s}),i = 1,2,3\\ \mathbf{F}_{\mathbf{o}_i}&=decoder_i(Concat(\mathbf{F}_i,\mathbf{F}_{\mathbf{s}_i},\mathbf{F}_{\mathbf{x}_{t_i}})) \end{aligned} \tag{7} FxtiFsiFoi=encoderi(xt)=encoderi(s),i=1,2,3=decoderi(Concat(Fi,Fsi,Fxti))(7)

其中,在编码器的三个下采样阶段,使用对称但不共享权重的编码器从 x t \mathbf{x}_t xt 和干净图像 s \mathbf{s} s 中提取特征。除了在 F i \mathbf{F}_i Fi F x t i \mathbf{F}_{\mathbf{x}_{t_i}} Fxti 之间的标准跳跃连接外,我们在三个上采样阶段融入了 F s i \mathbf{F}_{\mathbf{s}_i} Fsi 的多尺度特征。

Deep Image Prior Sampling(DIPS)

基于深度图像先验论文中的观察,即网络在学习高频噪声之前首先学习干净的低频成分,我们在去噪扩散概率模型(DDPM)采样过程中注意到了类似的模式。反向库尔贝克 - 莱布尼茨散度(AKLD)的下降随着采样从 1000 步推进而显示出越来越大的梯度,这表明基于扩散的真实噪声合成(RNSD)从低频内容过渡到高频噪声,如图 3 所示。由于去噪扩散隐式模型(DDIM)使用均匀的采样步骤,它与我们的噪声估计任务不太契合。因此,正如我们的实验所示,减少采样步骤的数量会导致性能大幅下降。
为了解决这个问题,我们提出了一种新的采样方式:

t = t l a s t + ( T − t l a s t ) e r ( i − 1 S − 1 ) − 1 e r − 1 , i = S : 1 (8) t = t_{last}+(T - t_{last})\frac{e^{r(\frac{i - 1}{S - 1})}-1}{e^{r}-1}, \quad i = S:1 \tag{8} t=tlast+(Ttlast)er1er(S1i1)1,i=S:1(8)

其中, T T T 是去噪扩散概率模型(DDPM)的采样步骤数, S S S 是基于深度图像先验(DIPS)的采样步骤数。 t l a s t t_{last} tlast 是第 0 步之前的最后一个采样步骤。由于边界效应,最后几步的生成效果较弱,所以当总采样步骤数减少时,将其置于重要步骤中。 r r r 控制采样密度的梯度。对于 T = 1000 T=1000 T=1000 S = 10 S=10 S=10,得到采样序列 [ 1000 , 572 , 327 , 186 , 106 , 59 , 33 , 18 , 9 , 4 , 0 ] [1000, 572, 327, 186, 106, 59, 33, 18, 9, 4, 0] [1000,572,327,186,106,59,33,18,9,4,0]
我们的基础版本,即基本的基于深度图像先验(DIPS - Basic),在保持质量的同时将采样步骤数减少到。此外,我们发现从步到步的低频学习可以有效地由一个单步模型替代,从而能够从更接近的截断步骤而不是进行采样。

我们的基础版本,即基本的基于深度图像先验(DIPS - Basic),在保持质量的同时将采样步骤数 S S S 减少到 30。此外,我们发现从 1000 步到 200 步的低频学习可以有效地由一个单步模型替代,从而能够从更接近的截断步骤 N = 200 N=200 N=200 而不是 T = 1000 T=1000 T=1000 进行采样。其具体公式如下:

∇ θ ∥ ψ θ ( x T , t N ) − ϵ θ ( x N , t N ) ∥ (9) \nabla_{\theta} \left\lVert \psi_{\theta}(x_T, t_N) - \epsilon_{\theta}(x_N, t_N) \right\rVert \tag{9} θψθ(xT,tN)ϵθ(xN,tN)(9)

其中,单步模型 ψ θ \psi_{\theta} ψθ 是从预训练模型 ϵ θ \epsilon_{\theta} ϵθ 中提炼出来的,这使我们能够降低初始采样位置,并构建确定性映射,从而在保持质量的同时实现 5 步采样。如算法 2 所示,这种方法被称为高级版基于深度图像先验(DIPS - Advanced)。

  • 算法 2
    在这里插入图片描述

相关文章:

论文阅读:Realistic Noise Synthesis with Diffusion Models

这篇文章是 2025 AAAI 的一篇工作,主要介绍的是用扩散模型实现对真实噪声的仿真模拟 Abstract 深度去噪模型需要大量来自现实世界的训练数据,而获取这些数据颇具挑战性。当前的噪声合成技术难以准确模拟复杂的噪声分布。我们提出一种新颖的逼真噪声合成…...

复杂场景使用xpath定位元素

在复杂场景下使用XPath定位元素时,可以通过以下高级技巧提高定位准确性和稳定性: 动态属性处理 模糊匹配: //div[contains(id, dynamic-part)] //button[starts-with(name, btn-)] //input[ends-with(class, -input)] (需XPath 2.0)多属性…...

算法基础——存储

引入 基础理论的进步,是推动技术实现重大突破,促使相关领域的技术达成跨越式发展的核心。 在发展日新月异的大数据领域,基础理论的核心无疑是算法。不管是技术设计,还是工程实践,都必须仰仗相关算法的支持&#xff0…...

动态规划 (环形)

在一个圆形操场的四周摆放着n堆石子,现要将石子有次序地合并成一堆。规定每次只能选相邻2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。试设计一个算法,计算出将n堆石子合并成一堆的最小得分和最大得分。 输入格式: n表示n…...

信号模块--simulink操作

位置simulink/sourses 常用的模块 功能:常数模块,提供一个常数 数据设置可以是一维或多维 一维数据设置 多维数据设置(例三维数据设置) 方波脉冲模块 模块用于按固定间隔生成方波脉冲信号 振幅就是方波的幅度,0到…...

Streamlit入门

1、Streamlit是什么 Streamlit 是一个用于快速构建数据应用的开源 Python 库,由 Streamlit 公司开发并维护。它极大地简化了从数据脚本到交互式 Web 应用的转化过程,让开发者无需具备前端开发的专业知识,就能轻松创建出美观、实用的交互式应…...

列表(列表是什么)

你将学习列表是什么以及如何使用列表元素。列表让你能够在一个地方存储成组的信息,其中可以只包含几个元素,也可以包含数百万个元素。 列表是新手可直接使用的最强大的Python功能之一,它融合了众多重要的编程概念。 列表是什么 列表 由一系列…...

笔记本搭配显示器

笔记本:2022款拯救者Y9000P,显卡RTX3060,分辨率2560*1600,刷新率:165Hz,无DP1.4口 显示器:2024款R27Q,27存,分辨率2560*1600,刷新率:165Hz &…...

基于排队理论的物联网发布/订阅通信系统建模与优化

论文标题 英文标题:Queuing Theory-Based Modeling and Optimization of a Publish/Subscribe IoT Communication System 中文标题:基于排队理论的物联网发布/订阅通信系统建模与优化 作者信息 Franc Pouhela Anthony Kiggundu Hans D. Schotten …...

指针(C语言)从0到1掌握指针,为后续学习c++打下基础

目录 一,指针 二,内存地址和指针 1,什么是内存地址 2,指针在不同系统下所占内存 三,指针的声明和初始化以及类型 1,指针的声明 2,指针 的初始化 1, 初始化方式优点及适用场景 4,指针的声明初始化类型…...

实验八 JSP访问数据库

实验八 JSP访问数据库 目的: 1、熟悉JDBC的数据库访问模式。 2、掌握使用My SQL数据库的使用 实验要求: 1、通过JDBC访问mysql数据,实现增删改查功能的实现 2、要求提交实验报告,将代码和实验结果页面截图放入报告中 实验过程&a…...

Day31-【AI思考】-关键支点识别与战略聚焦框架

文章目录 关键支点识别与战略聚焦框架**第一步:支点目标四维定位法****第二步:支点验证里程碑设计****第三步:目标网络重构方案****第四步:动态监控仪表盘** 执行工具箱核心心法 关键支点识别与战略聚焦框架 让思想碎片重焕生机的…...

DeepSeek与其他大模型相比

DeepSeek与其他大模型相比 与GPT-4对比 性能方面 推理速度:DeepSeek在解决复杂的数学、物理和逻辑推理问题方面速度惊人,是ChatGPT的两倍。“幻觉”现象:在处理需要网络信息检索的任务时,DeepSeek的“幻觉”现象似乎比ChatGPT更少。创意任务:ChatGPT在创意性任务,如创作…...

在深度Linux (Deepin) 20中安装Nvidia驱动

文章创作不易,麻烦大家点赞关注收藏一键三连。 在Deepin上面跑Tensorflow, pytorch等人工智能框架不是一件容易的事情。特别是如果你要使用GPU,就得有nvidia的驱动。默认情况下Deepin系统自带的是nouveau开源驱动。这是没办法用tensorflow的。下面内容是…...

“LoRA技术中参数初始化策略:为何A参数采用正态分布而B参数初始化为0”

在LoRA(Low-Rank Adaptation)中,参数A和B的初始化策略是经过精心设计的,以确保模型训练的稳定性和有效性。具体来说,参数A通常被初始化为正态分布,而参数B则初始化为0。这样的设计有以下几个优点&#xff1…...

C语言初阶力扣刷题——349. 两个数组的交集【难度:简单】

1. 题目描述 力扣在线OJ题目 给定两个数组,编写一个函数来计算它们的交集。 示例: 输入:nums1 [1,2,2,1], nums2 [2,2] 输出:[2] 输入:nums1 [4,9,5], nums2 [9,4,9,8,4] 输出:[9,4] 2. 思路 直接暴力…...

理解动手学深度学习的自编包d2l

跟着李沐的《动手学深度学习-PyTorch版》入门Python编程和Pytorch框架,以前是重度Matlab用户,对于Python里的各种包很不习惯。特别是,本书还自己做了一个名为d2l包,有几个问题很是困惑。今天终于弄明白了,写在这里&…...

RK3568使用opencv(使用摄像头捕获图像数据显示)

文章目录 一、opencv相关的类1. **cv::VideoCapture**2. **cv::Mat**3. **cv::cvtColor**4. **QImage**5. **QPixmap**总结 二、代码实现 一、opencv相关的类 1. cv::VideoCapture cv::VideoCapture 是 OpenCV 中用于视频捕捉的类,常用于从摄像头、视频文件、或者…...

OpenEuler学习笔记(十六):搭建postgresql高可用数据库环境

以下是在OpenEuler系统上搭建PostgreSQL高可用数据环境的一般步骤,通常可以使用流复制(Streaming Replication)或基于Patroni等工具来实现高可用,以下以流复制为例: 安装PostgreSQL 配置软件源:可以使用O…...

数学平均数应用

给定一个长度为 n 的数组 a。在一次操作中,你可以从索引 2 到 n−1中选择一个索引i,然后执行以下两个操作之一: 将 a[i−1] 减少 1,同时将 a[i1] 增加 1。 将 a[i1] 减少 1,同时将 a[i−1] 增加 1。 在每次操作后&…...

元旦和春节取名的历史变迁

在中国漫长的历史长河中的春节,真要追溯起来也只有一百多年历史——是从晚清时期才逐渐出现在国人的生活里的,而且那时不叫“春节”而叫“元旦”。只不过随着历史的发展过程,“过年”这个名词也一直在演变,直至1949年最终才定下来…...

USB鼠标的数据格式

USB鼠标的数据格式由HID&#xff08;Human Interface Device&#xff09;协议定义&#xff0c;通常包含3个字节的标准数据&#xff0c;具体格式如下&#xff1a; 字节内容描述第1字节按键状态Bit 0: 左键按下&#xff08;1&#xff09;<br>Bit 1: 右键按下&#xff08;1…...

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.27 线性代数王国:矩阵分解实战指南

1.27 线性代数王国&#xff1a;矩阵分解实战指南 #mermaid-svg-JWrp2JAP9qkdS2A7 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-JWrp2JAP9qkdS2A7 .error-icon{fill:#552222;}#mermaid-svg-JWrp2JAP9qkdS2A7 .erro…...

Kafka常见问题之 java.io.IOException: Disk error when trying to write to log

文章目录 Kafka常见问题之 java.io.IOException: Disk error when trying to write to log1. 问题概述2. 问题排查方向&#xff08;1&#xff09;磁盘空间不足&#xff08;2&#xff09;磁盘 I/O 故障&#xff08;3&#xff09;Kafka 日志文件损坏&#xff08;4&#xff09;Kaf…...

libOnvif通过组播不能发现相机

使用libOnvif库OnvifDiscoveryClient类&#xff0c; auto discovery new OnvifDiscoveryClient(QUrl(“soap.udp://239.255.255.250:3702”), cb.Build()); 会有错误&#xff1a; end of file or no input: message transfer interrupted or timed out(30 sec max recv delay)…...

Flink (十二) :Table API SQL (一) 概览

Apache Flink 有两种关系型 API 来做流批统一处理&#xff1a;Table API 和 SQL。Table API 是用于 Scala 和 Java 语言的查询API&#xff0c;它可以用一种非常直观的方式来组合使用选取、过滤、join 等关系型算子。Flink SQL 是基于 Apache Calcite 来实现的标准 SQL。无论输入…...

FFmpeg(7.1版本)的基本组成

1. 前言 FFmpeg 是一个非常流行的开源项目&#xff0c;它提供了处理音频、视频以及其他多媒体内容的强大工具。FFmpeg 包含了大量的库&#xff0c;可以用来解码、编码、转码、处理和播放几乎所有类型的多媒体文件。它广泛用于视频和音频的录制、转换、流媒体传输等领域。 2. F…...

基于微信小程序的辅助教学系统的设计与实现

标题:基于微信小程序的辅助教学系统的设计与实现 内容:1.摘要 摘要&#xff1a;随着移动互联网的普及和微信小程序的兴起&#xff0c;基于微信小程序的辅助教学系统成为了教育领域的一个新的研究热点。本文旨在设计和实现一个基于微信小程序的辅助教学系统&#xff0c;以提高教…...

单片机基础模块学习——超声波传感器

一、超声波原理 左边发射超声波信号&#xff0c;右边接收超声波信号 左边的芯片用来处理超声波发射信号&#xff0c;中间的芯片用来处理接收的超声波信号 二、超声波原理图 T——transmit 发送R——Recieve 接收 U18芯片对输入的N_A1信号进行放大&#xff0c;然后输入给超声…...

HTML<hgroup>标签

例子&#xff1a; 使用hgroup元素标记标题和段落是相关的&#xff1a; <hgroup> <h2>Norway</h2> <p>The land with the midnight sun.</p> </hgroup> 定义和用法&#xff1a; 标签<hgroup>用于包围标题和一个或多个<p&g…...