当前位置: 首页 > news >正文

Leetcode 3434. Maximum Frequency After Subarray Operation

  • Leetcode 3434. Maximum Frequency After Subarray Operation
    • 1. 解题思路
    • 2. 代码实现
  • 题目链接:3434. Maximum Frequency After Subarray Operation

1. 解题思路

这一题的话我们只需要考察所有的数 i i i转换为 k k k时所能够形成的最大的值。

而对于这个问题,事实上就是我们要考察任意序列当中 i i i k k k的差值的最大值,这个我们可以通过一个累积数组进行实现,我们不断记录当前 i i i k k k的累计次数差值,以及此前出现过的最小的差值,两者相减就是将 i i i转换为 k k k所能够获得的最大的值。

2. 代码实现

给出python代码实现如下:

class Solution:def maxFrequency(self, nums: List[int], k: int) -> int:cnt = Counter(nums)[k]ans = cntfor t in range(1, 51):if t == k:continuepre_min, delta, max_delta = 0, 0, 0for x in nums:if x == k:delta -= 1elif x == t:delta += 1max_delta = max(delta - pre_min, max_delta)pre_min = min(delta, pre_min)ans = max(ans, cnt+max_delta)return ans

提交代码评测得到:耗时5715ms,占用内存21.7MB。

相关文章:

Leetcode 3434. Maximum Frequency After Subarray Operation

Leetcode 3434. Maximum Frequency After Subarray Operation 1. 解题思路2. 代码实现 题目链接:3434. Maximum Frequency After Subarray Operation 1. 解题思路 这一题的话我们只需要考察所有的数 i i i转换为 k k k时所能够形成的最大的值。 而对于这个问题&…...

《DeepSeek-R1 问世,智能搜索领域迎来新变革》

DeepSeek-R1是由DeepSeek公司开发的一款创新型人工智能模型,自2024年5月7日发布以来,迅速在AI领域引起广泛关注。该模型凭借其卓越的语言理解能力、高效的数据处理能力、自适应学习能力、高安全性与可靠性以及广泛的应用场景与拓展性,在众多人…...

GEE | 植被总初级生产力GPP的时间变化特征

同学们好,这期我们分享的是植被总初级生产力GPP的日、月、生长季和年变化趋势代码。我们选用的数据集是MODIS/061/MOD17A2HGF,该产品时间跨度为2000-至今,空间分辨率500米,时间分辨率8天。 其中我们把生长季时间设置为了5-9月份&…...

安卓(android)饭堂广播【Android移动开发基础案例教程(第2版)黑马程序员】

一、实验目的(如果代码有错漏,可查看源码) 1.熟悉广播机制的实现流程。 2.掌握广播接收者的创建方式。 3.掌握广播的类型以及自定义官博的创建。 二、实验条件 熟悉广播机制、广播接收者的概念、广播接收者的创建方式、自定广播实现方式以及有…...

本地部署DeepSeek

1、打开ollama,点击“Download” Ollamahttps://ollama.com/ 2、下载完成后,安装ollama.exe 3、安装完成后,按"windowsR",输入"cmd” 4、输入“ollama -v”,查看版本,表示安装成功 5、返回ollama网页&#xff0c…...

赛博算卦之周易六十四卦JAVA实现:六幺算尽天下事,梅花化解天下苦。

佬们过年好呀~新年第一篇博客让我们来场赛博算命吧! 更多文章:个人主页 系列文章:JAVA专栏 欢迎各位大佬来访哦~互三必回!!! 文章目录 #一、文化背景概述1.文化起源2.起卦步骤 #二、卦象解读#三、just do i…...

Hive:窗口函数(1)

窗口函数 窗口函数OVER()用于定义一个窗口,该窗口指定了函数应用的数据范围 对窗口数据进行分区 partition by 必须和over () 一起使用, distribute by经常和sort by 一起使用,可以不和over() 一起使用.DISTRIBUTE BY决定了数据如何分布到不同的Reducer上&#xf…...

docker安装nacos2.2.4详解(含:nacos容器启动参数、环境变量、常见问题整理)

一、镜像下载 1、在线下载 在一台能连外网的linux上执行docker镜像拉取命令 docker pull nacos:2.2.4 2、离线包下载 两种方式: 方式一: -)在一台能连外网的linux上安装docker执行第一步的命令下载镜像 -)导出 # 导出镜像到…...

基于PLC的变频调速系统设计

摘要 现代科技发展迅速,特别是通讯技术的发展,工业现场提供了便捷的数据交互和控制的手段,将工业现场的仪表、驱动器、控制器以及上位机之间进行通讯连接,进行相互信息交互,数据准确高效的传送,并且对现场的…...

鸿蒙开发在onPageShow中数据加载不完整的问题分析与解决

API Version 12 1、onPageShow()作什么的 首先说明下几个前端接口的区别: ArkUI-X的aboutToAppear()接口是一个生命周期接口,用于在页面即将显示之前调用。 在ArkUI-X中,aboutToAppear()接口是一个重要的生命周期接口,它会在页…...

本地搭建deepseek-r1

一、下载ollama(官网下载比较慢,可以找个网盘资源下) 二、安装ollama 三、打开cmd,拉取模型deepseek-r1:14b(根据显存大小选择模型大小) ollama pull deepseek-r1:14b 四、运行模型 ollama run deepseek-r1:14b 五、使用网页api访问&#x…...

【数据结构与算法】AVL树的插入与删除实现详解

文章目录 前言Ⅰ. AVL树的定义Ⅱ. AVL树节点的定义Ⅲ. AVL树的插入Insert一、节点的插入二、插入的旋转① 新节点插入较高左子树的左侧(左左):右单旋② 新节点插入较高右子树的右侧(右右):左单旋③ 新节点插…...

【机器学习】自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测,对预测结果计算精确度和召回率及F1分数

一、使用pytorch框架实现逻辑回归 1. 数据部分: 首先自定义了一个简单的数据集,特征 X 是 100 个随机样本,每个样本一个特征,目标值 y 基于线性关系并添加了噪声。将 numpy 数组转换为 PyTorch 张量,方便后续在模型中…...

unity学习23:场景scene相关,场景信息,场景跳转

目录 1 默认场景和Assets里的场景 1.1 scene的作用 1.2 scene作为project的入口 1.3 默认场景 2 场景scene相关 2.1 创建scene 2.2 切换场景 2.3 build中的场景,在构建中包含的场景 (否则会认为是失效的Scene) 2.4 Scenes in Bui…...

AI(计算机视觉)自学路线

本文仅用来记录一下自学路线方便日后复习,如果对你自学有帮助的话也很开心o(* ̄▽ ̄*)ブ B站吴恩达机器学习->B站小土堆pytorch基础学习->opencv相关知识(Halcon或者opencv库)->四类神经网络(这里跟…...

Linux第104步_基于AP3216C之I2C实验

Linux之I2C实验是在AP3216C的基础上实现的,进一步熟悉修改设备树和编译设备树,以及学习如何编写I2C驱动和APP测试程序。 1、AP3216C的原理图 AP3216C集成了一个光强传感器ALS,一个接近传感器PS和一个红外LED,为三合一的环境传感…...

常用Android模拟器(雷电 MuMu 夜神 Genymotion 蓝叠) - 20250131

常用Android模拟器(雷电 MuMu 夜神 Genymotion 蓝叠) - 20250131 Android模拟器概述 Android 模拟器是一种软件工具,允许用户在 Windows、Linux 或 macOS 电脑上运行 Android 操作系统,以模拟 Android 设备的行为。它广泛用于 开发测试、应用运行、游戏…...

算法题(53):对称二叉树

审题: 需要我们判断二叉树是否满足对称结构,并返回判断结果 思路: 方法一:递归 其实是否对称分成两部分判断 第一部分:根节点是否相等 第二部分:根节点一的左子树和根节点二的右子树是否相等,根…...

Golang 并发机制-2:Golang Goroutine 和竞争条件

在今天的软件开发中,我们正在使用并发的概念,它允许一次执行多个任务。在Go编程中,理解Go例程是至关重要的。本文试图详细解释什么是例程,它们有多轻,通过简单地使用“go”关键字创建它们,以及可能出现的竞…...

深入剖析 CSRF 漏洞:原理、危害案例与防护

目录 前言 漏洞介绍 漏洞原理 产生条件 产生的危害 靶场练习 post 请求csrf案例 防御措施 验证请求来源 设置 SameSite 属性 双重提交 Cookie 结语 前言 在网络安全领域,各类漏洞层出不穷,时刻威胁着用户的隐私与数据安全。跨站请求伪造&…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...

在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:

在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档&#xff0c…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...