【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.25 视觉风暴:NumPy驱动数据可视化

1.25 视觉风暴:NumPy驱动数据可视化
目录
1.25.1 百万级点云实时渲染优化
1.25.2 CT医学影像三维重建实战
1.25.3 交互式数据分析看板开发
1.25.4 地理空间数据可视化进阶
1.25.5 WebAssembly前端渲染融合
1.25.1 百万级点云实时渲染优化
核心痛点分析
Matplotlib默认渲染器处理百万级散点图时会出现:
- 内存占用超过4GB
- 帧率低于5FPS
- 图像模糊失真
优化方案架构
代码实现
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm# 生成测试数据(100万点)
np.random.seed(42)
x = np.random.normal(size=1_000_000)
y = x * 0.3 + np.random.normal(scale=0.1, size=1_000_000)
z = np.sqrt(x**2 + y**2)# 分块处理函数
def chunk_render(data, chunks=100):fig = plt.figure(figsize=(10,6))ax = fig.add_subplot(111)# 创建颜色映射cmap = plt.cm.get_cmap('viridis')# 数据分块chunk_size = len(data) // chunksfor i in range(chunks):chunk = data[i*chunk_size : (i+1)*chunk_size]# 动态计算颜色和尺寸colors = cmap(z[i*chunk_size : (i+1)*chunk_size]/z.max())sizes = 10 * (z[i*chunk_size : (i+1)*chunk_size] - z.min()) / z.ptp()# 增量绘制ax.scatter(chunk[:,0], chunk[:,1], c=colors, s=sizes, edgecolors='none', alpha=0.6, marker='o', rasterized=True) # 关键优化参数plt.colorbar(ax.collections[0], label='Intensity')plt.tight_layout()return fig# 执行分块渲染
data = np.column_stack([x, y])
fig = chunk_render(data)
plt.show()
1.25.2 CT医学影像三维重建实战
体绘制原理
三维数据场的可视化通过光线投射算法实现:
I ( x , y ) = ∑ t = 0 T C ( t ) ⋅ α ( t ) ⋅ ∏ i = 0 t − 1 ( 1 − α ( i ) ) I(x,y) = \sum_{t=0}^{T} C(t)\cdot \alpha(t)\cdot \prod_{i=0}^{t-1}(1-\alpha(i)) I(x,y)=t=0∑TC(t)⋅α(t)⋅i=0∏t−1(1−α(i))
DICOM数据处理
import pydicom
import numpy as np
from mayavi import mlabdef load_dicom_series(directory):slices = [pydicom.dcm_read(f) for f in sorted(os.listdir(directory))]slices.sort(key=lambda x: float(x.ImagePositionPatient[2]))# 构建三维数组volume = np.stack([s.pixel_array for s in slices])volume = volume.astype(np.float32)# 标准化处理volume = (volume - volume.min()) / (volume.max() - volume.min())return volume# 可视化函数
def render_volume(vol, threshold=0.3):mlab.figure(size=(800,600))src = mlab.pipeline.scalar_field(vol)# 设置透明度函数vol = mlab.pipeline.volume(src, vmin=0.1*vol.max(), vmax=0.8*vol.max())# 调整颜色映射vol._volume_property.shade = Truevol._volume_property.ambient = 0.4vol.update_ctf = Truemlab.view(azimuth=45, elevation=60)mlab.show()# 执行三维重建
ct_volume = load_dicom_series('./CT_scans/')
render_volume(ct_volume)
1.25.3 交互式数据分析看板开发
Panel核心组件架构
完整示例代码
import panel as pn
import numpy as np
import holoviews as hv
from holoviews import optspn.extension()
hv.extension('bokeh')class DataDashboard:def __init__(self):self.data = np.random.randn(1000, 2)self.sigma = pn.widgets.FloatSlider(name='Sigma', start=0.1, end=2.0, value=1.0)self.bins = pn.widgets.IntSlider(name='Bins', start=5, end=50, value=20)self.plot_pane = pn.pane.HoloViews()self.control_panel = pn.Column(self.sigma, self.bins)# 绑定事件self.sigma.param.watch(self.update_plot, 'value')self.bins.param.watch(self.update_plot, 'value')def update_plot(self, event):# 生成核密度估计xs = np.linspace(-4, 4, 100)ys = np.exp(-xs**2/(2*self.sigma.value**2)) curve = hv.Curve((xs, ys)).opts(color='red', line_width=2)# 生成直方图hist = hv.Histogram(np.histogram(self.data[:,0], bins=self.bins.value))# 组合绘图overlay = (hist * curve).opts(opts.Histogram(alpha=0.5, color='blue'),opts.Curve(title=f"Sigma={self.sigma.value:.2f}"))self.plot_pane.object = overlaydef view(self):return pn.Row(self.control_panel, self.plot_pane)# 启动仪表盘
dashboard = DataDashboard()
dashboard.view().servable()
1.25.4 地理空间数据可视化进阶
坐标系转换数学原理
从WGS84到Web墨卡托投影:
x = R ⋅ λ y = R ⋅ ln [ tan ( π 4 + ϕ 2 ) ] x = R \cdot \lambda \\ y = R \cdot \ln[\tan(\frac{\pi}{4} + \frac{\phi}{2})] x=R⋅λy=R⋅ln[tan(4π+2ϕ)]
地理数据处理示例
import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import numpy as np# 生成测试数据
lons = np.random.uniform(-180, 180, 5000)
lats = np.random.uniform(-90, 90, 5000)
values = np.sin(np.radians(lats)) * np.cos(np.radians(lons))# 创建地图
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111, projection=ccrs.PlateCarree())# 绘制热力图
sc = ax.scatter(lons, lats, c=values, cmap='jet', s=10, transform=ccrs.PlateCarree(),alpha=0.7, edgecolors='none')# 添加地理要素
ax.coastlines(resolution='50m')
ax.add_feature(cartopy.feature.OCEAN, zorder=0)
ax.add_feature(cartopy.feature.LAND, edgecolor='black')
ax.gridlines()# 添加颜色条
plt.colorbar(sc, ax=ax, label='Value Intensity',orientation='horizontal', pad=0.05)
plt.title('Geospatial Data Visualization')
plt.show()
参考文献
| 名称 | 链接 |
|---|---|
| Matplotlib优化指南 | https://matplotlib.org/stable/tutorials/advanced/blitting.html |
| VTK体绘制文档 | https://vtk.org/documentation/ |
| Panel官方教程 | https://panel.holoviz.org/user_guide/Components.html |
| Cartopy地理处理 | https://scitools.org.uk/cartopy/docs/latest/ |
| WebGL渲染原理 | https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API |
| DICOM标准文档 | https://www.dicomstandard.org/current/ |
| NumPy性能优化 | https://numpy.org/doc/stable/user/c-info.ufunc-tutorial.html |
| 地理投影数学 | https://mathworld.wolfram.com/MercatorProjection.html |
| 医学影像处理 | https://radiopaedia.org/articles/dicom-file-format |
| WebAssembly与Python | https://emscripten.org/docs/porting/connecting_cpp_and_javascript/Interacting-with-code.html |
这篇文章包含了详细的原理介绍、代码示例、源码注释以及案例等。希望这对您有帮助。如果有任何问题请随私信或评论告诉我。
相关文章:
【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.25 视觉风暴:NumPy驱动数据可视化
1.25 视觉风暴:NumPy驱动数据可视化 目录 #mermaid-svg-i3nKPm64ZuQ9UcNI {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-i3nKPm64ZuQ9UcNI .error-icon{fill:#552222;}#mermaid-svg-i3nKPm64ZuQ9UcNI …...
idea maven本地有jar包,但还要从远程下载
idea 中,java 工程执行 maven reimport,报jar报无法下载。 我奇了个怪,我明明在本地仓库有啊,你非得从远程下载? 我从供应商那里拿来的,远程当然没有了。 这太奇葩了吧,折腾好久不行。 后来…...
C++编程语言:抽象机制:模板(Bjarne Stroustrup)
目录 23.1 引言和概观(Introduction and Overview) 23.2 一个简单的字符串模板(A Simple String Template) 23.2.1 模板的定义(Defining a Template) 23.2.2 模板实例化(Template Instantiation) 23.3 类型检查(Type Checking) 23.3.1 类型等价(Type Equivalence) …...
深入解析 Linux 内核中的页面错误处理机制
在现代操作系统中,页面错误(Page Fault)是内存管理的重要组成部分。当程序试图访问未映射到物理内存的虚拟内存地址时,CPU 会触发页面错误异常。Linux 内核通过一系列复杂的机制来处理这些异常,确保系统的稳定性和性能。本文将深入解析 Linux 内核中处理页面错误的核心代码…...
【AIGC专栏】AI在自然语言中的应用场景
ChatGPT出来以后,突然间整个世界都非常的为之一惊。很多人大喊AI即将读懂人类,虽然这是一句夸大其词的话,但是经过未来几十年的迭代,ChatGPT会变成什么样我们还真的很难说。在当前生成式内容来说,ChatGPT毫无疑问在当前…...
Ubuntu 20.04安装Protocol Buffers 2.5.0
个人博客地址:Ubuntu 20.04安装Protocol Buffers 2.5.0 | 一张假钞的真实世界 安装过程 Protocol Buffers 2.5.0源码下载:https://github.com/protocolbuffers/protobuf/tree/v2.5.0。下载并解压。 将autogen.sh文件中以下内容: curl htt…...
解锁豆瓣高清海报(一) 深度爬虫与requests进阶之路
前瞻 PosterBandit 这个脚本能够根据用户指定的日期,爬取你看过的影视最高清的海报,然后使用 PixelWeaver.py 自动拼接成指定大小的长图。 你是否发现直接从豆瓣爬取下来的海报清晰度很低? 使用 .pic .nbg img CSS 选择器,在 我…...
计算机组成原理——数据运算与运算器(二)
生活就像一条蜿蜒的河流,有时平静,有时湍急。我们在这条河流中前行,会遇到风雨,也会遇见阳光。重要的是,无论遇到什么,都要保持内心的平静与坚定。每一次的挫折,都是让我们成长的机会࿱…...
SpringBoot+Vue的理解(含axios/ajax)-前后端交互前端篇
文章目录 引言SpringBootThymeleafVueSpringBootSpringBootVue(前端)axios/ajaxVue作用响应式动态绑定单页面应用SPA前端路由 前端路由URL和后端API URL的区别前端路由的数据从哪里来的 Vue和只用三件套axios区别 关于地址栏url和axios请求不一致VueJSPS…...
【AI】DeepSeek 概念/影响/使用/部署
在大年三十那天,不知道你是否留意到,“deepseek”这个词出现在了各大热搜榜单上。这引起了我的关注,出于学习的兴趣,我深入研究了一番,才有了这篇文章的诞生。 概念 那么,什么是DeepSeek?首先百…...
javascript-es6 (二)
函数进阶 函数提升 函数提升与变量提升比较类似,是指函数在声明之前即可被调用 好处:能够使函数的声明调用更灵活 函数提升出现在 相同作用域 当中 //可调用函数 fn()//后声明函数 function fn() {console.log(可先调用再声明) } 注意:函数表…...
供应链系统设计-供应链中台系统设计(十四)- 清结算中心设计篇(三)
关于清结算中心的设计,我们之前的两篇文章中,对于业务诉求的好的标准进行了初步的描述,如果没有看的同学可以参考一下两篇文章进行了解,这样更有利于理解本篇的内容。链接具体如下: 供应链系统设计-供应链中台系统设计…...
【自学笔记】MySQL的重点知识点-持续更新
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 MySQL重点知识点MySQL知识点总结一、数据库基础二、MySQL的基本使用三、数据类型四、触发器(Trigger)五、存储引擎六、索引七、事务处理八、…...
X86路由搭配rtl8367s交换机
x86软路由,买双网口就好。或者单网口主板,外加一个pcie千兆。 华硕h81主板戴尔i350-T2双千兆,做bridge下载,速度忽高忽低。 今天交换机到货,poe供电,还是网管,支持Qvlan及IGMP Snooping…...
Linux环境基础开发工具的使用(apt, vim, gcc, g++, gbd, make/Makefile)
目录 什么是软件包 Linux 软件包管理器 apt 认识apt 查找软件包 安装软件 如何实现本地机器和云服务器之间的文件互传 卸载软件 Linux编辑器 - vim vim的基本概念 vim下各模式的切换 vim命令模式下各指令汇总 vim底行模式个指令汇总 Linux编译器 - gcc/g gcc/g的作…...
多模态论文笔记——ViViT
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细解读多模态论文《ViViT: A Video Vision Transformer》,2021由google 提出用于视频处理的视觉 Transformer 模型,在视频多模态领域有…...
搜索与图论复习1
1深度优先遍历DFS 2宽度优先遍历BFS 3树与图的存储 4树与图的深度优先遍历 5树与图的宽度优先遍历 6拓扑排序 1DFS: #include<bits/stdc.h> using namespace std; const int N10; int n; int path[N]; bool st[N]; void dfs(int u){if(nu){for(int i0;…...
【数据结构】初识链表
顺序表的优缺点 缺点: 中间/头部的插入删除,时间复杂度效率较低,为O(N) 空间不够的时候需要扩容。 如果是异地扩容,增容需要申请新空间,拷贝数据,释放旧空间,会有不小的消耗。 扩容可能会存在…...
第11章:根据 ShuffleNet V2 迁移学习医学图像分类任务:甲状腺结节检测
目录 1. Shufflenet V2 2. 甲状腺结节检测 2.1 数据集 2.2 训练参数 2.3 训练结果 2.4 可视化网页推理 3. 下载 1. Shufflenet V2 shufflenet v2 论文中提出衡量轻量级网络的性能不能仅仅依靠FLOPs计算量,还应该多方面的考虑,例如MAC(memory acc…...
deepseek+vscode自动化测试脚本生成
近几日Deepseek大火,我这里也尝试了一下,确实很强。而目前vscode的AI toolkit插件也已经集成了deepseek R1,这里就介绍下在vscode中利用deepseek帮助我们完成自动化测试脚本的实践分享 安装AI ToolKit并启用Deepseek 微软官方提供了一个针对AI辅助的插件,也就是 AI Toolk…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
LLM基础1_语言模型如何处理文本
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken:OpenAI开发的专业"分词器" torch:Facebook开发的强力计算引擎,相当于超级计算器 理解词嵌入:给词语画"…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
