算法【完全背包】
完全背包与01背包的区别仅在于每种商品可以选取无限次。时间复杂度O(物品数量 * 背包容量)
下面通过题目加深理解。
题目一
测试链接:疯狂的采药 - 洛谷
分析:这是一道完全背包的模板题。对于第i个物品的可能性展开也有两种,第一种是不取第i个物品,即就是从0到i-1个物品里面取剩余重量为j的最大价值;第二种是只取一个第i个物品,即从0到i个物品取剩余重量为j-一个i物品重量的最大值+一个i物品的价值。下面代码直接采用空间压缩的方法,对于此种相当标准的完全背包,应该记住其空间压缩的解法,对于一些带有完全背包性质的题,可以使用记忆化搜索,再改为严格位置依赖以及空间压缩等。因为题目有个测试答案超过int,所以为了通过dp用了指针,一般是直接定义dp为静态数组。代码如下。
#include <iostream>
using namespace std;
int t, m;
int herb[10001][2];
long long* dp;
int main(void){scanf("%d%d", &t, &m);for(int i = 0;i < m;++i){scanf("%d%d", &herb[i][0], &herb[i][1]);}int length = (10000000 / m) + 2;dp = new long long [length];for(int i = 0;i < length;++i){dp[i] = 0;}for(int i = 0;i < m;++i){for(int j = 0;j <= t;++j){if(j - herb[i][0] >= 0){dp[j] = dp[j] > dp[j-herb[i][0]] + herb[i][1] ?dp[j] : dp[j-herb[i][0]] + herb[i][1];}}}printf("%ld", dp[t]);delete [] dp;return 0;
}
其中,dp数组表示在前i个物品里面取,剩余重量为j的情况下的最大价值。
题目二
测试链接:10. 正则表达式匹配 - 力扣(LeetCode)
分析:这道题需要注意可能性的展开。对于字符串s到了末尾而字符串p也到了末尾,则代表匹配成功;如果字符串s到了末尾且字符串p剩余的后缀能够成为一个空串也代表能够匹配成功;而字符串s没到末尾但字符串p到了末尾,代表匹配不成功。因为存在*的特殊情况,所以需要对下一位置是否为*分情况讨论。下一个位置不是*时,如果当前两个字符串的字符能够匹配成功,则整个字符串是否匹配成功取决于后一位置的字符匹配;如果匹配不成功,则不论后一位置匹配能否成功,都是不成功的。如果下一位置为*则具有完全背包性质,可以不取即直接跳过当前位置和当前位置之后的*,从*之后的位置开始匹配;或者如果当前位置能够匹配成功,则可多次使用当前位置与下一位置的*进行匹配。下面代码为记忆化搜索版本。代码如下。
class Solution {
public:int dp[20][20];int f(int index1, int index2, string s, string p){if(index1 == s.size()){if(index2 == p.size()){return 1;}else{return index2 + 1 < p.size() && p[index2+1] == '*' && f(index1, index2+2, s, p);}}if(index2 == p.size()){return 0;}if(dp[index1][index2] != -1){return dp[index1][index2];}char ch1 = s[index1];char ch2 = p[index2];int ans;if((index2+1 < p.size() && p[index2+1] != '*') || index2+1 == p.size()){if(ch1 != ch2 && ch2 != '.'){ans = 0;}else{ans = f(index1+1, index2+1, s, p);}}else{ans = f(index1, index2+2, s, p);if(ch1 == ch2 || ch2 == '.'){ans |= f(index1+1, index2, s, p);}}dp[index1][index2] = ans;return ans;}void build(){for(int i = 0;i < 20;++i){for(int j = 0;j < 20;++j){dp[i][j] = -1;}}}bool isMatch(string s, string p) {build();return f(0, 0, s, p);}
};
其中,f方法表示在以字符串s的index1下标开始,字符串p的index2的下标开始匹配的情况下,返回能否匹配成功。这里不用bool类型是因为,dp需要1表示成功,0表示失败,-1表示未赋值。
题目三
测试链接:44. 通配符匹配 - 力扣(LeetCode)
分析:这道题和上一道题类似,不过可能性少了许多。对于字符是否是*分情况讨论,如果不是*且当前字符能够匹配成功,则整个字符串能否匹配成功取决于后一位置的字符匹配;如果当前位置为*,则可以不要这个*,即从下一位置开始匹配或者重复使用多次这个*即匹配一个字符序列。需要注意的是下面的代码分别是记忆化搜索、严格位置依赖、空间压缩的版本,并且记忆化搜索会超时。代码如下。
class Solution {
public:int dp[2000][2000];void build(){for(int i = 0;i < 2000;++i){for(int j = 0;j < 2000;++j){dp[i][j] = -1;}}}int f(int index1, int index2, string s, string p){if(index1 == s.size()){if(index2 == p.size()){return 1;}else{return p[index2] == '*' && f(index1, index2+1, s, p);}}if(index2 == p.size()){return 0;}if(dp[index1][index2] != -1){return dp[index1][index2];}char ch1 = s[index1];char ch2 = p[index2];int ans;if(ch2 != '*'){ans = (ch1 == ch2 || ch2 == '?') && f(index1+1, index2+1, s, p);}else{ans = f(index1, index2+1, s, p);ans |= f(index1+1, index2, s, p);}dp[index1][index2] = ans;return ans;}bool isMatch(string s, string p) {build();return f(0, 0, s, p);}
};
其中,f方法表示在以字符串s的index1下标开始,字符串p的index2的下标开始匹配的情况下,返回能否匹配成功。
class Solution {
public:bool dp[2001][2001];bool isMatch(string s, string p) {int length1 = s.size();int length2 = p.size();dp[length1][length2] = true;for(int index2 = length2-1;index2 >= 0;--index2){dp[length1][index2] = p[index2] == '*' && dp[length1][index2+1];}for(int index1 = length1-1;index1 >= 0;--index1){dp[index1][length2] = false;}for(int i = length1-1;i >= 0;--i){for(int j = length2-1;j >= 0;--j){if(p[j] != '*'){dp[i][j] = (s[i] == p[j] || p[j] == '?') && dp[i+1][j+1];}else{dp[i][j] = dp[i][j+1] || dp[i+1][j];}}}return dp[0][0];}
};
其中,dp数组的初始化参考记忆化搜索时递归的出口条件;dp数组的含义和记忆化搜索的f方法含义一样。
class Solution {
public:bool dp[2001];bool isMatch(string s, string p) {int length1 = s.size();int length2 = p.size();bool temp1, temp2;dp[length2] = true;for(int index2 = length2-1;index2 >= 0;--index2){dp[index2] = p[index2] == '*' && dp[index2+1];}for(int i = length1-1;i >= 0;--i){temp1 = i == length1-1 ? true : false;dp[length2] = false;for(int j = length2-1;j >= 0;--j){temp2 = dp[j];if(p[j] != '*'){dp[j] = (s[i] == p[j] || p[j] == '?') && temp1;}else{dp[j] = dp[j+1] || dp[j];}temp1 = temp2;}}return dp[0];}
};
对于这道题的空间压缩需要使用到辅助变量存储一些值。
题目四
测试链接:[USACO08NOV] Buying Hay S - 洛谷
分析:对于这道题,主要思路是使用二分答案法得到每次的开销,对于得到的开销求出采购到的最大甘草磅数能否满足题目条件,根据能否满足条件进行二分,继续求得开销(二分答案法详情见拙作 算法【二分答案法】)。代码如下。
#include <iostream>
#include <vector>
using namespace std;
int N, H;
int firm[100][2];
vector<int> dp;
bool f(int cost){dp.assign(cost+1, 0);for(int i = 0;i < N;++i){for(int j = 0;j <= cost;++j){if(j - firm[i][1] >= 0){dp[j] = dp[j] > dp[j-firm[i][1]] + firm[i][0] ?dp[j] : dp[j-firm[i][1]] + firm[i][0];}}}return dp[cost] >= H;
}
int main(void){int max_cost = 0;int ans;scanf("%d%d", &N, &H);for(int i = 0;i < N;++i){scanf("%d%d", &firm[i][0], &firm[i][1]);max_cost = max_cost > ((H + firm[i][0] - 1)/firm[i][0]) * firm[i][1] ?max_cost : ((H + firm[i][0] - 1)/firm[i][0]) * firm[i][1];}int left = 0, right = max_cost, middle;while (left <= right){middle = left + (right - left) / 2;if(f(middle)){ans = middle;right = middle - 1;}else{left = middle + 1;}}printf("%d", ans);return 0;
}
相关文章:
算法【完全背包】
完全背包与01背包的区别仅在于每种商品可以选取无限次。时间复杂度O(物品数量 * 背包容量) 下面通过题目加深理解。 题目一 测试链接:疯狂的采药 - 洛谷 分析:这是一道完全背包的模板题。对于第i个物品的可能性展开也有两种,第一种是不取第…...
二叉树的遍历
有一个结点的二叉树。给出每个结点的两个子结点编号,建立一棵二叉树,如果是叶子结点,则输入 0 0。 建好树这棵二叉树之后,依次求出它的前序、中序、后序列遍历。 输入格式: 第一行一个整数n ,表示结点数。 之后n 行…...
1.31 实现五个线程的同步
1.使用互斥锁实现 1>程序代码 #include <stdio.h> #include <string.h> #include <unistd.h> #include <stdlib.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <pthread.h> #include &l…...
three.js+WebGL踩坑经验合集(6.1):负缩放,负定矩阵和行列式的关系(2D版本)
春节忙完一轮,总算可以继续来写博客了。希望在春节假期结束之前能多更新几篇。 这一篇会偏理论多一点。笔者本没打算在这一系列里面重点讲理论,所以像相机矩阵推导这种网上已经很多优质文章的内容,笔者就一笔带过。 然而关于负缩放…...
【开源免费】基于SpringBoot+Vue.JS体育馆管理系统(JAVA毕业设计)
本文项目编号 T 165 ,文末自助获取源码 \color{red}{T165,文末自助获取源码} T165,文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…...
《大数据时代“快刀”:Flink实时数据处理框架优势全解析》
在数字化浪潮中,数据呈爆发式增长,实时数据处理的重要性愈发凸显。从金融交易的实时风险监控,到电商平台的用户行为分析,各行业都急需能快速处理海量数据的工具。Flink作为一款开源的分布式流处理框架,在这一领域崭露头…...
antdesignvue统计数据源条数、计算某列合计值、小数计算不精确多了很多小数位
1.在</a-table>下方加如下代码 <div>数据总条数:{ {tableData.length}}       <template>A列合计:{ {sum}}</template> </div> 注:tableData为<a-tabl…...
02.05、链表求和
02.05、[中等] 链表求和 1、题目描述 给定两个用链表表示的整数,每个节点包含一个数位。 这些数位是反向存放的,也就是个位排在链表首部。 编写函数对这两个整数求和,并用链表形式返回结果。 2、解题思路 本题要求对两个链表表示的整数…...
dmfldr实战
dmfldr实战 本文使用达梦的快速装载工具,对测试表进行数据导入导出。 新建测试表 create table “BENCHMARK”.“TEST_FLDR” ( “uid” INTEGER identity(1, 1) not null , “name” VARCHAR(24), “begin_date” TIMESTAMP(0), “amount” DECIMAL(6, 2), prim…...
Kafka 副本机制(包含AR、ISR、OSR、HW 和 LEO 介绍)
文章目录 Kafka 副本机制(包含AR、ISR、OSR、HW 和 LEO 介绍)1. 副本的基本概念2. 副本同步和一致性2.1 AR(Assigned Replicas)2.2 ISR(In-Sync Replicas)2.3 OSR(Out-of-Sync Replicas…...
爬虫基础(二)Web网页的基本原理
一、网页的组成 网页由三部分构成:HTML、JavaScript、CSS。 (1)HTML HTML 相当于网页的骨架,它通过使用标签来定义网页内容的结构。 举个例子: 它把图片标签为img、把视频标签为video,然后组合到一个界面…...
外网访问禅道软件项目管理系统
禅道项目管理软件是一款国产的开源免费项目管理软件,专注于研发项目管理,旨在帮助企业或团队提高项目管理的效率和质量。 本文将详细的介绍如何在 Windows 系统电脑端下载运行禅道软件项目管理系统,并且结合路由侠内网穿透实现外网访问本地的…...
Python 梯度下降法(五):Adam Optimize
文章目录 Python 梯度下降法(五):Adam Optimize一、数学原理1.1 介绍1.2 符号说明1.3 实现流程 二、代码实现2.1 函数代码2.2 总代码2.3 遇到的问题2.4 算法优化 三、优缺点3.1 优点3.2 缺点 四、相关链接 Python 梯度下降法(五&a…...
笔试-二进制
应用题 将符合区间[l,r]内的十进制整数转换为二进制表示,请问不包含“101”的整数个数是多少? 实现 l int(input("请输入下限l,其值大于等于1:")) r int(input("请输入上限r,其值大于等于l&#x…...
springboot 2.7.6 security mysql redis jwt配置例子
数据库结构用的是若依的数据库基本结构,ruoyi.vip。 总体参考了文章:https://blog.csdn.net/qq_45847507/article/details/126681110 本文章只包含不同的地方,相同的不再赘述。 1、创建spring工程,jdk1.8,maven。 pom.xml中依赖部…...
FreeRTOS从入门到精通 第十六章(任务通知)
参考教程:【正点原子】手把手教你学FreeRTOS实时系统_哔哩哔哩_bilibili 一、任务通知简介 1、概述 (1)任务通知顾名思义是用来通知任务的,任务控制块中的结构体成员变量ulNotifiedValue就是这个通知值。 (2&#…...
TensorFlow 简单的二分类神经网络的训练和应用流程
展示了一个简单的二分类神经网络的训练和应用流程。主要步骤包括: 1. 数据准备与预处理 2. 构建模型 3. 编译模型 4. 训练模型 5. 评估模型 6. 模型应用与部署 加载和应用已训练的模型 1. 数据准备与预处理 在本例中,数据准备是通过两个 Numpy 数…...
无人机图传模块 wfb-ng openipc-fpv,4G
openipc 的定位是为各种模块提供底层的驱动和linux最小系统,openipc 是采用buildroot系统编译而成,因此二次开发能力有点麻烦。为啥openipc 会用于无人机图传呢?因为openipc可以将现有的网络摄像头ip-camera模块直接利用起来,从而…...
.cc扩展名是什么语言?C语言必须用.c为扩展名吗?主流编程语言扩展名?Java为什么不能用全数字的文件名?
.cc扩展名是什么语言? .cc是C语言使用的扩展名,一种说法是它是c with class的简写,当然C语言使用的扩展名不止.cc和.cpp, 还包含.cxx, .c, .C等,这些在不同编译器系统采用的默认设定不同,需要区分使用。当然,编译器提…...
【MyDB】4-VersionManager 之 3-死锁及超时检测
【MyDB】4-VersionManager 之 3-死锁及超时检测 死锁及超时检测案例背景LockTable锁请求与等待管理 addvm调用addputIntoList,isInList,removeFromList 死锁检测 hasDeadLock方法资源释放与重分配 参考资料 死锁及超时检测 本章涉及代码:top/…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...
MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例
一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...
安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖
在Vuzix M400 AR智能眼镜的助力下,卢森堡罗伯特舒曼医院(the Robert Schuman Hospitals, HRS)凭借在无菌制剂生产流程中引入增强现实技术(AR)创新项目,荣获了2024年6月7日由卢森堡医院药剂师协会࿰…...
