当前位置: 首页 > news >正文

一、TensorFlow的建模流程

1. 数据准备与预处理:
  • 加载数据:使用内置数据集或自定义数据。

  • 预处理:归一化、调整维度、数据增强。

  • 划分数据集:训练集、验证集、测试集。

  • 转换为Dataset对象:利用tf.data优化数据流水线。

import tensorflow as tf
from tensorflow.keras import layers# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()# 数据预处理:归一化并添加通道维度
x_train = x_train[..., tf.newaxis].astype('float32') / 255.0
x_test = x_test[..., tf.newaxis].astype('float32') / 255.0# 划分验证集(10%训练集作为验证)
val_split = 0.1
val_size = int(len(x_train) * val_split)
x_val, y_val = x_train[:val_size], y_train[:val_size]
x_train, y_train = x_train[val_size:], y_train[val_size:]# 创建tf.data.Dataset
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train_dataset = train_dataset.shuffle(1000).batch(32)
val_dataset = tf.data.Dataset.from_tensor_slices((x_val, y_val)).batch(32)
test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
2. 构建模型:
  • 选择模型类型Sequential(顺序模型)、Functional API(复杂结构)或自定义子类化。

  • 堆叠网络层:如卷积层、池化层、全连接层。

model = tf.keras.Sequential([layers.Conv2D(32, 3, activation='relu', input_shape=(28, 28, 1)),  # 输入形状需匹配数据layers.MaxPooling2D(),layers.Flatten(),layers.Dense(128, activation='relu'),layers.Dropout(0.5),  # 防止过拟合layers.Dense(10, activation='softmax')  # 输出层,10类分类
])
3. 编译模型:
  • 选择优化器:如AdamSGD

  • 指定损失函数:分类常用sparse_categorical_crossentropy,回归用mse

  • 设置评估指标:如accuracyAUC

model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy']
)
4. 训练模型:
  • 调用fit方法:传入训练数据、验证数据、训练轮次。

  • 使用回调函数:如早停、模型保存、日志记录。

# 定义回调函数
callbacks = [tf.keras.callbacks.EarlyStopping(patience=2, monitor='val_loss'),tf.keras.callbacks.ModelCheckpoint('best_model.h5', save_best_only=True)
]# 训练模型
history = model.fit(train_dataset,epochs=20,validation_data=val_dataset,callbacks=callbacks
)
5. 评估模型:
  • 使用evaluate方法:在测试集上评估性能。

test_loss, test_acc = model.evaluate(test_dataset)
print(f'Test Accuracy: {test_acc:.4f}, Test Loss: {test_loss:.4f}')
6. 模型应用与部署
  • 预测新数据:使用predict方法。

  • 保存与加载模型:支持H5或SavedModel格式。

# 预测示例
predictions = model.predict(x_test[:5])  # 预测前5个样本# 保存模型
model.save('mnist_model.h5')  # 保存为H5文件# 加载模型
loaded_model = tf.keras.models.load_model('mnist_model.h5')

关键注意事项

  • 数据维度:确保输入数据的形状与模型第一层匹配(如input_shape=(28,28,1))。

  • 过拟合控制:使用Dropout、数据增强、正则化等技术。

  • 回调函数优化:早停可防止无效训练,ModelCheckpoint保存最佳模型。

  • 硬件加速:利用GPU训练时,确保TensorFlow GPU版本已安装。

流程图

使用TensorFlow实现神经网络模型的一般流程包括:1. 数据准备与预处理
2. 构建模型
3. 编译模型
4. 训练模型
5. 评估模型
6. 模型应用与部署

通过以上步骤,可快速实现从数据到部署的完整流程,适应分类、回归等多种任务。

相关文章:

一、TensorFlow的建模流程

1. 数据准备与预处理: 加载数据:使用内置数据集或自定义数据。 预处理:归一化、调整维度、数据增强。 划分数据集:训练集、验证集、测试集。 转换为Dataset对象:利用tf.data优化数据流水线。 import tensorflow a…...

指导初学者使用Anaconda运行GitHub上One - DM项目的步骤

以下是指导初学者使用Anaconda运行GitHub上One - DM项目的步骤: 1. 安装Anaconda 下载Anaconda: 让初学者访问Anaconda官网(https://www.anaconda.com/products/distribution),根据其操作系统(Windows、M…...

7层还是4层?网络模型又为什么要分层?

~犬📰余~ “我欲贱而贵,愚而智,贫而富,可乎? 曰:其唯学乎” 一、为什么要分层 \quad 网络通信的复杂性促使我们需要一种分层的方法来理解和管理网络。就像建筑一样,我们不会把所有功能都混在一起…...

C++:抽象类习题

题目内容: 求正方体、球、圆柱的表面积,抽象出一个公共的基类Container为抽象类,在其中定义一个公共的数据成员radius(此数据可以作为正方形的边长、球的半径、圆柱体底面圆半径),以及求表面积的纯虚函数area()。由此抽象类派生出…...

C++ 泛型编程指南02 (模板参数的类型推导)

文章目录 一 深入了解C中的函数模板类型推断什么是类型推断?使用Boost TypeIndex库进行类型推断分析示例代码关键点解析 2. 理解函数模板类型推断2.1 指针或引用类型2.1.1 忽略引用2.1.2 保持const属性2.1.3 处理指针类型 2.2 万能引用类型2.3 传值方式2.4 传值方式…...

音视频入门基础:RTP专题(5)——FFmpeg源码中,解析SDP的实现

一、引言 FFmpeg源码中通过ff_sdp_parse函数解析SDP。该函数定义在libavformat/rtsp.c中: int ff_sdp_parse(AVFormatContext *s, const char *content) {const char *p;int letter, i;char buf[SDP_MAX_SIZE], *q;SDPParseState sdp_parse_state { { 0 } }, *s1…...

计算机网络 应用层 笔记 (电子邮件系统,SMTP,POP3,MIME,IMAP,万维网,HTTP,html)

电子邮件系统: SMTP协议 基本概念 工作原理 连接建立: 命令交互 客户端发送命令: 服务器响应: 邮件传输: 连接关闭: 主要命令 邮件发送流程 SMTP的缺点: MIME: POP3协议 基本概念…...

【视频+图文详解】HTML基础3-html常用标签

图文教程 html常用标签 常用标签 1. 文档结构 <!DOCTYPE html>&#xff1a;声明HTML文档类型。<html>&#xff1a;定义HTML文档的根元素。<head>&#xff1a;定义文档头部&#xff0c;包含元数据。<title>&#xff1a;设置网页标题&#xff0c;浏览…...

FreeRTOS学习 --- 消息队列

队列简介 队列是任务到任务、任务到中断、中断到任务数据交流的一种机制&#xff08;消息传递&#xff09; 全局变量的弊端&#xff1a;数据无保护&#xff0c;导致数据不安全&#xff0c;当多个任务同时对该变量操作时&#xff0c;数据易受损 使用队列的情况如下&#xff1a;…...

PHP If...Else 语句详解

PHP If...Else 语句详解 引言 在PHP编程中&#xff0c;if...else语句是流程控制的重要组成部分&#xff0c;它允许程序根据条件判断执行不同的代码块。本文将详细解析PHP中的if...else语句&#xff0c;包括其基本用法、高级技巧以及注意事项。 一、基本用法 if...else语句的…...

pytorch使用SVM实现文本分类

人工智能例子汇总&#xff1a;AI常见的算法和例子-CSDN博客 完整代码&#xff1a; import torch import torch.nn as nn import torch.optim as optim import jieba import numpy as np from sklearn.model_selection import train_test_split from sklearn.feature_extract…...

安卓(android)读取手机通讯录【Android移动开发基础案例教程(第2版)黑马程序员】

一、实验目的&#xff08;如果代码有错漏&#xff0c;可在代码地址查看&#xff09; 1.熟悉内容提供者(Content Provider)的概念和作用。 2.掌握内容提供者的创建和使用方法。 4.掌握内容URI的结构和用途。 二、实验条件 1.熟悉内容提供者的工作原理。 2.掌握内容提供者访问其…...

【Qt】常用的容器

Qt提供了多个基于模板的容器类&#xff0c;这些容器类可用于存储指定类型的数据项。例如常用的字符串列表类 QStringList 可用来操作一个 QList<QString>列表。 Qt的容器类比标准模板库(standard template library&#xff0c;STL)中的容器类更轻巧、使用更安全且更易于使…...

基于UKF-IMM无迹卡尔曼滤波与交互式多模型的轨迹跟踪算法matlab仿真,对比EKF-IMM和UKF

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于UKF-IMM无迹卡尔曼滤波与交互式多模型的轨迹跟踪算法matlab仿真,对比EKF-IMM和UKF。 2.测试软件版本以及运行结果展示 MATLAB2022A版本运行 3.核心程序 .…...

分布式事务组件Seata简介与使用,搭配Nacos统一管理服务端和客户端配置

文章目录 一. Seata简介二. 官方文档三. Seata分布式事务代码实现0. 环境简介1. 添加undo_log表2. 添加依赖3. 添加配置4. 开启Seata事务管理5. 启动演示 四. Seata Server配置Nacos1. 修改配置类型2. 创建Nacos配置 五. Seata Client配置Nacos1. 增加Seata关联Nacos的配置2. 在…...

JavaScript常用的内置构造函数

JavaScript作为一种广泛应用的编程语言&#xff0c;提供了丰富的内置构造函数&#xff0c;帮助开发者处理不同类型的数据和操作。这些内置构造函数在创建和操作对象时非常有用。本文将详细介绍JavaScript中常用的内置构造函数及其用途。 常用内置构造函数概述 1. Object Obj…...

25寒假算法刷题 | Day1 | LeetCode 240. 搜索二维矩阵 II,148. 排序链表

目录 240. 搜索二维矩阵 II题目描述题解 148. 排序链表题目描述题解 240. 搜索二维矩阵 II 点此跳转题目链接 题目描述 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性&#xff1a; 每行的元素从左到右升序排列。每列的元素从上到…...

MQTT知识

MQTT协议 MQTT 是一种基于发布/订阅模式的轻量级消息传输协议&#xff0c;专门针对低带宽和不稳定网络环境的物联网应用而设计&#xff0c;可以用极少的代码为联网设备提供实时可靠的消息服务。MQTT 协议广泛应用于物联网、移动互联网、智能硬件、车联网、智慧城市、远程医疗、…...

【机器学习与数据挖掘实战】案例11:基于灰色预测和SVR的企业所得税预测分析

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈机器学习与数据挖掘实战 ⌋ ⌋ ⌋ 机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联…...

新一代搜索引擎,是 ES 的15倍?

Manticore Search介绍 Manticore Search 是一个使用 C 开发的高性能搜索引擎&#xff0c;创建于 2017 年&#xff0c;其前身是 Sphinx Search 。Manticore Search 充分利用了 Sphinx&#xff0c;显着改进了它的功能&#xff0c;修复了数百个错误&#xff0c;几乎完全重写了代码…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

spring:实例工厂方法获取bean

spring处理使用静态工厂方法获取bean实例&#xff0c;也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下&#xff1a; 定义实例工厂类&#xff08;Java代码&#xff09;&#xff0c;定义实例工厂&#xff08;xml&#xff09;&#xff0c;定义调用实例工厂&#xff…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...

莫兰迪高级灰总结计划简约商务通用PPT模版

莫兰迪高级灰总结计划简约商务通用PPT模版&#xff0c;莫兰迪调色板清新简约工作汇报PPT模版&#xff0c;莫兰迪时尚风极简设计PPT模版&#xff0c;大学生毕业论文答辩PPT模版&#xff0c;莫兰迪配色总结计划简约商务通用PPT模版&#xff0c;莫兰迪商务汇报PPT模版&#xff0c;…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...

jdbc查询mysql数据库时,出现id顺序错误的情况

我在repository中的查询语句如下所示&#xff0c;即传入一个List<intager>的数据&#xff0c;返回这些id的问题列表。但是由于数据库查询时ID列表的顺序与预期不一致&#xff0c;会导致返回的id是从小到大排列的&#xff0c;但我不希望这样。 Query("SELECT NEW com…...