一、TensorFlow的建模流程

1. 数据准备与预处理:
-
加载数据:使用内置数据集或自定义数据。
-
预处理:归一化、调整维度、数据增强。
-
划分数据集:训练集、验证集、测试集。
-
转换为Dataset对象:利用
tf.data优化数据流水线。
import tensorflow as tf
from tensorflow.keras import layers# 加载MNIST数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()# 数据预处理:归一化并添加通道维度
x_train = x_train[..., tf.newaxis].astype('float32') / 255.0
x_test = x_test[..., tf.newaxis].astype('float32') / 255.0# 划分验证集(10%训练集作为验证)
val_split = 0.1
val_size = int(len(x_train) * val_split)
x_val, y_val = x_train[:val_size], y_train[:val_size]
x_train, y_train = x_train[val_size:], y_train[val_size:]# 创建tf.data.Dataset
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
train_dataset = train_dataset.shuffle(1000).batch(32)
val_dataset = tf.data.Dataset.from_tensor_slices((x_val, y_val)).batch(32)
test_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
2. 构建模型:
-
选择模型类型:
Sequential(顺序模型)、Functional API(复杂结构)或自定义子类化。 -
堆叠网络层:如卷积层、池化层、全连接层。
model = tf.keras.Sequential([layers.Conv2D(32, 3, activation='relu', input_shape=(28, 28, 1)), # 输入形状需匹配数据layers.MaxPooling2D(),layers.Flatten(),layers.Dense(128, activation='relu'),layers.Dropout(0.5), # 防止过拟合layers.Dense(10, activation='softmax') # 输出层,10类分类
])
3. 编译模型:
-
选择优化器:如
Adam、SGD。 -
指定损失函数:分类常用
sparse_categorical_crossentropy,回归用mse。 -
设置评估指标:如
accuracy、AUC。
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy']
)
4. 训练模型:
-
调用
fit方法:传入训练数据、验证数据、训练轮次。 -
使用回调函数:如早停、模型保存、日志记录。
# 定义回调函数
callbacks = [tf.keras.callbacks.EarlyStopping(patience=2, monitor='val_loss'),tf.keras.callbacks.ModelCheckpoint('best_model.h5', save_best_only=True)
]# 训练模型
history = model.fit(train_dataset,epochs=20,validation_data=val_dataset,callbacks=callbacks
)
5. 评估模型:
-
使用
evaluate方法:在测试集上评估性能。
test_loss, test_acc = model.evaluate(test_dataset)
print(f'Test Accuracy: {test_acc:.4f}, Test Loss: {test_loss:.4f}')
6. 模型应用与部署:
-
预测新数据:使用
predict方法。 -
保存与加载模型:支持H5或SavedModel格式。
# 预测示例
predictions = model.predict(x_test[:5]) # 预测前5个样本# 保存模型
model.save('mnist_model.h5') # 保存为H5文件# 加载模型
loaded_model = tf.keras.models.load_model('mnist_model.h5')
关键注意事项
-
数据维度:确保输入数据的形状与模型第一层匹配(如
input_shape=(28,28,1))。 -
过拟合控制:使用Dropout、数据增强、正则化等技术。
-
回调函数优化:早停可防止无效训练,ModelCheckpoint保存最佳模型。
-
硬件加速:利用GPU训练时,确保TensorFlow GPU版本已安装。
流程图
使用TensorFlow实现神经网络模型的一般流程包括:1. 数据准备与预处理
2. 构建模型
3. 编译模型
4. 训练模型
5. 评估模型
6. 模型应用与部署
通过以上步骤,可快速实现从数据到部署的完整流程,适应分类、回归等多种任务。
相关文章:
一、TensorFlow的建模流程
1. 数据准备与预处理: 加载数据:使用内置数据集或自定义数据。 预处理:归一化、调整维度、数据增强。 划分数据集:训练集、验证集、测试集。 转换为Dataset对象:利用tf.data优化数据流水线。 import tensorflow a…...
指导初学者使用Anaconda运行GitHub上One - DM项目的步骤
以下是指导初学者使用Anaconda运行GitHub上One - DM项目的步骤: 1. 安装Anaconda 下载Anaconda: 让初学者访问Anaconda官网(https://www.anaconda.com/products/distribution),根据其操作系统(Windows、M…...
7层还是4层?网络模型又为什么要分层?
~犬📰余~ “我欲贱而贵,愚而智,贫而富,可乎? 曰:其唯学乎” 一、为什么要分层 \quad 网络通信的复杂性促使我们需要一种分层的方法来理解和管理网络。就像建筑一样,我们不会把所有功能都混在一起…...
C++:抽象类习题
题目内容: 求正方体、球、圆柱的表面积,抽象出一个公共的基类Container为抽象类,在其中定义一个公共的数据成员radius(此数据可以作为正方形的边长、球的半径、圆柱体底面圆半径),以及求表面积的纯虚函数area()。由此抽象类派生出…...
C++ 泛型编程指南02 (模板参数的类型推导)
文章目录 一 深入了解C中的函数模板类型推断什么是类型推断?使用Boost TypeIndex库进行类型推断分析示例代码关键点解析 2. 理解函数模板类型推断2.1 指针或引用类型2.1.1 忽略引用2.1.2 保持const属性2.1.3 处理指针类型 2.2 万能引用类型2.3 传值方式2.4 传值方式…...
音视频入门基础:RTP专题(5)——FFmpeg源码中,解析SDP的实现
一、引言 FFmpeg源码中通过ff_sdp_parse函数解析SDP。该函数定义在libavformat/rtsp.c中: int ff_sdp_parse(AVFormatContext *s, const char *content) {const char *p;int letter, i;char buf[SDP_MAX_SIZE], *q;SDPParseState sdp_parse_state { { 0 } }, *s1…...
计算机网络 应用层 笔记 (电子邮件系统,SMTP,POP3,MIME,IMAP,万维网,HTTP,html)
电子邮件系统: SMTP协议 基本概念 工作原理 连接建立: 命令交互 客户端发送命令: 服务器响应: 邮件传输: 连接关闭: 主要命令 邮件发送流程 SMTP的缺点: MIME: POP3协议 基本概念…...
【视频+图文详解】HTML基础3-html常用标签
图文教程 html常用标签 常用标签 1. 文档结构 <!DOCTYPE html>:声明HTML文档类型。<html>:定义HTML文档的根元素。<head>:定义文档头部,包含元数据。<title>:设置网页标题,浏览…...
FreeRTOS学习 --- 消息队列
队列简介 队列是任务到任务、任务到中断、中断到任务数据交流的一种机制(消息传递) 全局变量的弊端:数据无保护,导致数据不安全,当多个任务同时对该变量操作时,数据易受损 使用队列的情况如下:…...
PHP If...Else 语句详解
PHP If...Else 语句详解 引言 在PHP编程中,if...else语句是流程控制的重要组成部分,它允许程序根据条件判断执行不同的代码块。本文将详细解析PHP中的if...else语句,包括其基本用法、高级技巧以及注意事项。 一、基本用法 if...else语句的…...
pytorch使用SVM实现文本分类
人工智能例子汇总:AI常见的算法和例子-CSDN博客 完整代码: import torch import torch.nn as nn import torch.optim as optim import jieba import numpy as np from sklearn.model_selection import train_test_split from sklearn.feature_extract…...
安卓(android)读取手机通讯录【Android移动开发基础案例教程(第2版)黑马程序员】
一、实验目的(如果代码有错漏,可在代码地址查看) 1.熟悉内容提供者(Content Provider)的概念和作用。 2.掌握内容提供者的创建和使用方法。 4.掌握内容URI的结构和用途。 二、实验条件 1.熟悉内容提供者的工作原理。 2.掌握内容提供者访问其…...
【Qt】常用的容器
Qt提供了多个基于模板的容器类,这些容器类可用于存储指定类型的数据项。例如常用的字符串列表类 QStringList 可用来操作一个 QList<QString>列表。 Qt的容器类比标准模板库(standard template library,STL)中的容器类更轻巧、使用更安全且更易于使…...
基于UKF-IMM无迹卡尔曼滤波与交互式多模型的轨迹跟踪算法matlab仿真,对比EKF-IMM和UKF
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于UKF-IMM无迹卡尔曼滤波与交互式多模型的轨迹跟踪算法matlab仿真,对比EKF-IMM和UKF。 2.测试软件版本以及运行结果展示 MATLAB2022A版本运行 3.核心程序 .…...
分布式事务组件Seata简介与使用,搭配Nacos统一管理服务端和客户端配置
文章目录 一. Seata简介二. 官方文档三. Seata分布式事务代码实现0. 环境简介1. 添加undo_log表2. 添加依赖3. 添加配置4. 开启Seata事务管理5. 启动演示 四. Seata Server配置Nacos1. 修改配置类型2. 创建Nacos配置 五. Seata Client配置Nacos1. 增加Seata关联Nacos的配置2. 在…...
JavaScript常用的内置构造函数
JavaScript作为一种广泛应用的编程语言,提供了丰富的内置构造函数,帮助开发者处理不同类型的数据和操作。这些内置构造函数在创建和操作对象时非常有用。本文将详细介绍JavaScript中常用的内置构造函数及其用途。 常用内置构造函数概述 1. Object Obj…...
25寒假算法刷题 | Day1 | LeetCode 240. 搜索二维矩阵 II,148. 排序链表
目录 240. 搜索二维矩阵 II题目描述题解 148. 排序链表题目描述题解 240. 搜索二维矩阵 II 点此跳转题目链接 题目描述 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性: 每行的元素从左到右升序排列。每列的元素从上到…...
MQTT知识
MQTT协议 MQTT 是一种基于发布/订阅模式的轻量级消息传输协议,专门针对低带宽和不稳定网络环境的物联网应用而设计,可以用极少的代码为联网设备提供实时可靠的消息服务。MQTT 协议广泛应用于物联网、移动互联网、智能硬件、车联网、智慧城市、远程医疗、…...
【机器学习与数据挖掘实战】案例11:基于灰色预测和SVR的企业所得税预测分析
【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈机器学习与数据挖掘实战 ⌋ ⌋ ⌋ 机器学习是人工智能的一个分支,专注于让计算机系统通过数据学习和改进。它利用统计和计算方法,使模型能够从数据中自动提取特征并做出预测或决策。数据挖掘则是从大型数据集中发现模式、关联…...
新一代搜索引擎,是 ES 的15倍?
Manticore Search介绍 Manticore Search 是一个使用 C 开发的高性能搜索引擎,创建于 2017 年,其前身是 Sphinx Search 。Manticore Search 充分利用了 Sphinx,显着改进了它的功能,修复了数百个错误,几乎完全重写了代码…...
Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
pycharm 设置环境出错
pycharm 设置环境出错 pycharm 新建项目,设置虚拟环境,出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...
多元隐函数 偏导公式
我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式,给定一个隐函数关系: F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 🧠 目标: 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z、 …...
uni-app学习笔记二十七--设置底部菜单TabBar的样式
官方文档地址:uni.setTabBarItem(OBJECT) | uni-app官网 uni.setTabBarItem(OBJECT) 动态设置 tabBar 某一项的内容,通常写在项目的App.vue的onLaunch方法中,用于项目启动时立即执行 重要参数: indexnumber是tabBar 的哪一项&…...
安全领域新突破:可视化让隐患无处遁形
在安全领域,隐患就像暗处的 “幽灵”,随时可能引发严重事故。传统安全排查手段,常常难以将它们一网打尽。你是否好奇,究竟是什么神奇力量,能让这些潜藏的隐患无所遁形?没错,就是可视化技术。它如…...
Vue.js教学第二十一章:vue实战项目二,个人博客搭建
基于 Vue 的个人博客网站搭建 摘要: 随着前端技术的不断发展,Vue 作为一种轻量级、高效的前端框架,为个人博客网站的搭建提供了极大的便利。本文详细介绍了基于 Vue 搭建个人博客网站的全过程,包括项目背景、技术选型、项目架构设计、功能模块实现、性能优化与测试等方面。…...
创客匠人:如何通过创始人IP打造实现知识变现与IP变现的长效增长?
在流量红利逐渐消退的当下,创始人IP的价值愈发凸显。它不仅能够帮助中小企业及个人创业者突破竞争壁垒,还能成为企业品牌影响力的核心资产。然而,市场上IP孵化机构鱼龙混杂,如何选择一家真正具备长期价值的合作伙伴?创…...
