python学opencv|读取图像(五十二)使用cv.matchTemplate()函数实现最佳图像匹配
【1】引言
前序学习了图像的常规读取和基本按位操作技巧,相关文章包括且不限于:
python学opencv|读取图像-CSDN博客
python学opencv|读取图像(四十九)原理探究:使用cv2.bitwise()系列函数实现图像按位运算-CSDN博客
实际上都还是简单的图像操作,在此基础上,我们尝试对图像进行识别。比如在一堆图像里,找出和模板图像最相似的目标图像,这就是本次文章想要学习的目标: cv.matchTemplate()函数。
【2】官网教程
点击下方链接,直达cv.matchTemplate()函数的官网教程:
OpenCV: Object Detection
官网对cv.matchTemplate()函数的解释为:
图1 cv.matchTemplate()函数的官网教程
官网对cv.matchTemplate()函数的参数解释为:
void cv::matchTemplate (
InputArray image, #供匹配的图像
InputArray templ, #匹配参照的模板
OutputArray result, #匹配结果
int method, #匹配方法
InputArray mask = noArray() ) #掩模矩阵,默认即可,不是此次重点
为对匹配效果进行标记,还需要读取匹配结果,使用cv2.minMaxLoc()函数,点击下方链接可以直达官网说明页面:
OpenCV: Operations on arrays
官网对cv2.minMaxLoc()函数说明页面的相关解释为:
图2 cv.minMaxLoc()函数的官网教程
官网对cv.matchTemplate()函数的参数解释为:
void cv::minMaxLoc (
const SparseMat & a, #输入数据
double * minVal, #最小值
double * maxVal, #最大值
int * minIdx = 0, #最小坐标
int * maxIdx = 0 ) #最大坐标
【3】代码测试
首先引入相关模块和图像:
import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片
srcm = cv.imread('srcm.png') #读取图像srcx.png
srcg = cv.imread('srcg.png') #读取图像srcp.png
srcc = cv.imread('srcc.png') #读取图像srcp.png
rows,cols,cans=srcg.shape #读取图像属性
rowsc,colsc,cansc=srcc.shape #读取图像属性
在这里,以srcm为待匹配图像,srcg和srcc为模板图像,也就是需要匹配两个。
然后进行图像匹配操作:
#匹配结果
results=cv.matchTemplate(srcm,srcg,cv.TM_CCORR_NORMED)
results1=cv.matchTemplate(srcm,srcc,cv.TM_CCORR_NORMED)
之后读取匹配结果以备做标记:
#取值
minValue,maxValue,minLoc,maxLoc=cv.minMaxLoc(results)
minValuec,maxValuec,minLocc,maxLocc=cv.minMaxLoc(results1)
做标记一般用方框,所以需要调用cv2.rectangle()函数。相关文章的学习链接为:python学opencv|读取图像(十九)使用cv2.rectangle()绘制矩形-CSDN博客
这个函数要两个坐标点,所以还需要自定义新的坐标点:
#取最大坐标
resultPoint1=maxLoc
print("resultPoint1=",resultPoint1)#取最大坐标
resultPoint2=maxLocc
print("resultPoint2=",resultPoint2)#定义新坐标
resultPoint3=(resultPoint1[0]+cols,resultPoint1[1]+rows)
print("resultPoint3=",resultPoint3)#定义新坐标
resultPoint4=(resultPoint2[0]+colsc,resultPoint2[1]+rowsc)
print("resultPoint3=",resultPoint3)
之后及时做标记、显示匹配效果:
#作标记
cv.circle(srcm,(250,250),30,(0,255,0))
cv.rectangle(srcm,resultPoint1,resultPoint3,(0,255,0),2)
cv.rectangle(srcm,resultPoint2,resultPoint4,(200,180,55),2)# 显示结果
cv.imshow('srcm ', srcm)
cv.imshow('srcg ', srcg)
cv.imshow('srcc ', srcc)#窗口控制
cv.waitKey() # 图像不关闭
cv.destroyAllWindows() # 释放所有窗口
程序运行相关的图像有:
图3 srcm.png
图4 模板srcg.png
图5 模板srcc.png
图6 匹配效果srcgc.png
图6为程序运行后的匹配效果,可见猫猫头和女孩都匹配成功了。
【4】细节说明
图6中给猫猫头增加了一个圆圈标记,是为了增强对照,增加圆圈标记的相关文章链接为:
python学opencv|读取图像(二十一)使用cv2.circle()绘制圆形进阶_opencv circle-CSDN博客
【5】总结
掌握了python+opencv实现使用cv.matchTemplate()函数实现最佳图像匹配的技巧。
相关文章:

python学opencv|读取图像(五十二)使用cv.matchTemplate()函数实现最佳图像匹配
【1】引言 前序学习了图像的常规读取和基本按位操作技巧,相关文章包括且不限于: python学opencv|读取图像-CSDN博客 python学opencv|读取图像(四十九)原理探究:使用cv2.bitwise()系列函数实现图像按位运算-CSDN博客…...

通信方式、点对点通信、集合通信
文章目录 从硬件PCIE、NVLINK、RDMA原理到通信NCCL、MPI原理!通信实现方式:机器内通信、机器间通信通信实现方式:通讯协调通信实现方式:机器内通信:PCIe通信实现方式:机器内通信:NVLink通信实现…...

TCP编程
1.socket函数 int socket(int domain, int type, int protocol); 头文件:include<sys/types.h>,include<sys/socket.h> 参数 int domain AF_INET: IPv4 Internet protocols AF_INET6: IPv6 Internet protocols AF_UNIX, AF_LOCAL : Local…...
OpenAI 实战进阶教程 - 第七节: 与数据库集成 - 生成 SQL 查询与优化
内容目标 学习如何使用 OpenAI 辅助生成和优化多表 SQL 查询了解如何获取数据库结构信息并与 OpenAI 结合使用 实操步骤 1. 创建 SQLite 数据库示例 创建数据库及表结构: import sqlite3# 连接 SQLite 数据库(如果不存在则创建) conn sq…...
Apache Iceberg数据湖技术在海量实时数据处理、实时特征工程和模型训练的应用技术方案和具体实施步骤及代码
Apache Iceberg在处理海量实时数据、支持实时特征工程和模型训练方面的强大能力。Iceberg支持实时特征工程和模型训练,特别适用于需要处理海量实时数据的机器学习工作流。 Iceberg作为数据湖,以支持其机器学习平台中的特征存储。Iceberg的分层结构、快照…...

QT交叉编译环境搭建(Cmake和qmake)
介绍一共有两种方法(基于qmake和cmake): 1.直接调用虚拟机中的交叉编译工具编译 2.在QT中新建编译套件kits camke和qmake的区别:CMake 和 qmake 都是自动化构建工具,用于简化构建过程,管理编译设置&…...

Turing Complete-成对的麻烦
这一关是4个输入,当输入中1的个数大于等于2时,输出1。 那么首先用个与门来检测4个输入中,1的个数是否大于等于2,当大于等于2时,至少会有一个与门输出1,所以再用两级或门讲6个与门的输出取或,得…...
寒假刷题Day20
一、80. 删除有序数组中的重复项 II class Solution { public:int removeDuplicates(vector<int>& nums) {int n nums.size();int stackSize 2;for(int i 2; i < n; i){if(nums[i] ! nums[stackSize - 2]){nums[stackSize] nums[i];}}return min(stackSize, …...

deepseek 本地化部署和小模型微调
安装ollama 因为本人gpu卡的机器系统是centos 7, 直接使用ollama会报 所以ollama使用镜像方式进行部署, 拉取镜像ollama/ollama 启动命令 docker run -d --privileged -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama 查看ollama 是否启动…...
【Java异步编程】基于任务类型创建不同的线程池
文章目录 一. 按照任务类型对线程池进行分类1. IO密集型任务的线程数2. CPU密集型任务的线程数3. 混合型任务的线程数 二. 线程数越多越好吗三. Redis 单线程的高效性 使用线程池的好处主要有以下三点: 降低资源消耗:线程是稀缺资源,如果无限…...
makailio-alias_db模块详解
ALIAS_DB 模块 作者 Daniel-Constantin Mierla micondagmail.com Elena-Ramona Modroiu ramonaasipto.com 编辑 Daniel-Constantin Mierla micondagmail.com 版权 © 2005 Voice Sistem SRL © 2008 asipto.com 目录 管理员指南 概述依赖 2.1 Kamailio 模块 2.2 外…...

文字显示省略号
多行文本溢出显示省略号...

[LeetCode] 字符串完整版 — 双指针法 | KMP
字符串 基础知识双指针法344# 反转字符串541# 反转字符串II54K 替换数字151# 反转字符串中的单词55K 右旋字符串 KMP 字符串匹配算法28# 找出字符串中第一个匹配项的下标#459 重复的子字符串 基础知识 字符串的结尾:空终止字符00 char* name "hello"; …...
从零开始部署Dify:后端与前端服务完整指南
从零开始部署Dify:后端与前端服务完整指南 一、环境准备1. 系统要求2. 项目结构 二、后端服务部署1. 中间件启动(Docker Compose)2. 后端环境配置3. 依赖安装与数据库迁移4. 服务启动 三、前端界面搭建1. 环境配置2. 服务启动 四、常见问题排…...
springboot中路径默认配置与重定向/转发所存在的域对象
Spring Boot 是一种简化 Spring 应用开发的框架,它提供了多种默认配置和方便的开发特性。在 Web 开发中,路径配置和请求的重定向/转发是常见操作。本文将详细介绍 Spring Boot 中的路径默认配置,并解释重定向和转发过程中存在的域对象。 一、…...

二叉树——429,515,116
今天继续做关于二叉树层序遍历的相关题目,一共有三道题,思路都借鉴于最基础的二叉树的层序遍历。 LeetCode429.N叉树的层序遍历 这道题不再是二叉树了,变成了N叉树,也就是该树每一个节点的子节点数量不确定,可能为2&a…...
Leetcode 3444. Minimum Increments for Target Multiples in an Array
Leetcode 3444. Minimum Increments for Target Multiples in an Array 1. 解题思路2. 代码实现 题目链接:3444. Minimum Increments for Target Multiples in an Array 1. 解题思路 这一题我的思路上就是一个深度优先遍历,考察target数组当中的每一个…...

分享半导体Fab 缺陷查看系统,平替klarity defect系统
分享半导体Fab 缺陷查看系统,平替klarity defect系统;开发了半年有余。 查看Defect Map,Defect image,分析Defect size,defect count trend. 不用再采用klarity defect系统(license 太贵) 也可以…...

Java基础——分层解耦——IOC和DI入门
目录 三层架构 Controller Service Dao 编辑 调用过程 面向接口编程 分层解耦 耦合 内聚 软件设计原则 控制反转 依赖注入 Bean对象 如何将类产生的对象交给IOC容器管理? 容器怎样才能提供依赖的bean对象呢? 三层架构 Controller 控制…...

DeepSeek-R1 本地部署教程(超简版)
文章目录 一、DeepSeek相关网站二、DeepSeek-R1硬件要求三、本地部署DeepSeek-R11. 安装Ollama1.1 Windows1.2 Linux1.3 macOS 2. 下载和运行DeepSeek模型3. 列出本地已下载的模型 四、Ollama命令大全五、常见问题解决附:DeepSeek模型资源 一、DeepSeek相关网站 官…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...

2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

LabVIEW双光子成像系统技术
双光子成像技术的核心特性 双光子成像通过双低能量光子协同激发机制,展现出显著的技术优势: 深层组织穿透能力:适用于活体组织深度成像 高分辨率观测性能:满足微观结构的精细研究需求 低光毒性特点:减少对样本的损伤…...

Vue ③-生命周期 || 脚手架
生命周期 思考:什么时候可以发送初始化渲染请求?(越早越好) 什么时候可以开始操作dom?(至少dom得渲染出来) Vue生命周期: 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...
DiscuzX3.5发帖json api
参考文章:PHP实现独立Discuz站外发帖(直连操作数据库)_discuz 发帖api-CSDN博客 简单改造了一下,适配我自己的需求 有一个站点存在多个采集站,我想通过主站拿标题,采集站拿内容 使用到的sql如下 CREATE TABLE pre_forum_post_…...

AxureRP-Pro-Beta-Setup_114413.exe (6.0.0.2887)
Name:3ddown Serial:FiCGEezgdGoYILo8U/2MFyCWj0jZoJc/sziRRj2/ENvtEq7w1RH97k5MWctqVHA 注册用户名:Axure 序列号:8t3Yk/zu4cX601/seX6wBZgYRVj/lkC2PICCdO4sFKCCLx8mcCnccoylVb40lP...
js 设置3秒后执行
如何在JavaScript中延迟3秒执行操作 在JavaScript中,要设置一个操作在指定延迟后(例如3秒)执行,可以使用 setTimeout 函数。setTimeout 是JavaScript的核心计时器方法,它接受两个参数: 要执行的函数&…...