机器学习10
自定义数据集 使用scikit-learn中svm的包实现svm分类
代码
import numpy as np
import matplotlib.pyplot as pltclass1_points = np.array([[1.9, 1.2],[1.5, 2.1],[1.9, 0.5],[1.5, 0.9],[0.9, 1.2],[1.1, 1.7],[1.4, 1.1]])class2_points = np.array([[3.2, 3.2],[3.7, 2.9],[3.2, 2.6],[1.7, 3.3],[3.4, 2.6],[4.1, 2.3],[3.0, 2.9]])x1_data = np.concatenate((class1_points[:, 0], class2_points[:, 0]))
x2_data = np.concatenate((class1_points[:, 1], class2_points[:, 1]))
y = np.concatenate((np.ones(class1_points.shape[0]), -np.ones(class2_points.shape[0])))w1 = 0.1
w2 = 0.1
b = 0
learning_rate = 0.05l_data = x1_data.sizefig, (ax1, ax2) = plt.subplots(2, 1)step_list = np.array([]) # 初始化为空数组
loss_values = np.array([]) # 初始化为空数组num_iterations = 1000
for n in range(1, num_iterations + 1):z = w1 * x1_data + w2 * x2_data + byz = y * zloss = 1 - yzloss[loss < 0] = 0hinge_loss = np.mean(loss)loss_values = np.append(loss_values, hinge_loss)step_list = np.append(step_list, n)gradient_w1 = 0gradient_w2 = 0gradient_b = 0for i in range(len(y)):if loss[i] > 0:gradient_w1 += -y[i] * x1_data[i]gradient_w2 += -y[i] * x2_data[i]gradient_b += -y[i]gradient_w1 /= len(y)gradient_w2 /= len(y)gradient_b /= len(y)w1 -= learning_rate * gradient_w1w2 -= learning_rate * gradient_w2b -= learning_rate * gradient_b# 显示频率设置frequence_display = 50if n % frequence_display == 0 or n == 1:if np.abs(w2) < 1e-5:continuex1_min, x1_max = 0, 6x2_min, x2_max = -(w1 * x1_min + b) / w2, -(w1 * x1_max + b) / w2ax1.clear()ax1.scatter(x1_data[:len(class1_points)], x2_data[:len(class1_points)], c='red', label='Class 1')ax1.scatter(x1_data[len(class1_points):], x2_data[len(class1_points):], c='blue', label='Class 2')ax1.plot((x1_min, x1_max), (x2_min, x2_max), 'r-')ax1.set_title(f"SVM: w1={round(w1.item(), 3)}, w2={round(w2.item(), 3)}, b={round(b.item(), 3)}")ax2.clear()ax2.plot(step_list, loss_values, 'g-')ax2.set_xlabel("Step")ax2.set_ylabel("Loss")# 显示图形plt.pause(1)plt.show()
效果展示
相关文章:

机器学习10
自定义数据集 使用scikit-learn中svm的包实现svm分类 代码 import numpy as np import matplotlib.pyplot as pltclass1_points np.array([[1.9, 1.2],[1.5, 2.1],[1.9, 0.5],[1.5, 0.9],[0.9, 1.2],[1.1, 1.7],[1.4, 1.1]])class2_points np.array([[3.2, 3.2],[3.7, 2.9],…...

【Block总结】CoT,上下文Transformer注意力|即插即用
一. 论文信息 标题: Contextual Transformer Networks for Visual Recognition论文链接: arXivGitHub链接: https://github.com/JDAI-CV/CoTNet 二. 创新点 上下文Transformer模块(CoT): 提出了CoT模块,能够有效利用输入键之间的上下文信息…...
linux库函数 gettimeofday() localtime的概念和使用案例
在Linux系统中,gettimeofday() 和 localtime() 是两个常用的时间处理函数,分别用于获取高精度时间戳和将时间戳转换为本地时间。以下是它们的概念和使用案例的详细说明: 1. gettimeofday() 函数 概念 功能:获取当前时间…...

编程题-电话号码的字母组合(中等)
题目: 给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 给出数字到字母的映射如下(与电话按键相同)。注意 1 不对应任何字母。 解法一(哈希表动态添加)&#x…...

EasyExcel使用详解
文章目录 EasyExcel使用详解一、引言二、环境准备与基础配置1、添加依赖2、定义实体类 三、Excel 读取详解1、基础读取2、自定义监听器3、多 Sheet 处理 四、Excel 写入详解1、基础写入2、动态列与复杂表头3、样式与模板填充 五、总结 EasyExcel使用详解 一、引言 EasyExcel 是…...
基于“蘑菇书”的强化学习知识点(二):强化学习中基于策略(Policy-Based)和基于价值(Value-Based)方法的区别
强化学习中基于策略(Policy-Based)和基于价值(Value-Based)方法的区别 摘要强化学习中基于策略(Policy-Based)和基于价值(Value-Based)方法的区别1. 定义与核心思想(1) 基于策略的方…...

民法学学习笔记(个人向) Part.2
民法学学习笔记(个人向) Part.2 民法始终在解决两个生活中的核心问题: 私法自治;交易安全; 3. 自然人 3.4 个体工商户、农村承包经营户 都是特殊的个体经济单位; 3.4.1 个体工商户 是指在法律的允许范围内,依法经…...

物业管理系统源码驱动社区管理革新提升用户满意度与服务效率
内容概要 在当今社会,物业管理正面临着前所未有的挑战,尤其是在社区管理方面。人们对社区安全、环境卫生、设施维护等日常生活需求愈发重视,物业公司必须提升服务质量,以满足居民日益增长的期望。而物业管理系统源码的出现&#…...

租房管理系统助力数字化转型提升租赁服务质量与用户体验
内容概要 随着信息技术的快速发展,租房管理系统正逐渐成为租赁行业数字化转型的核心工具。通过全面集成资产管理、租赁管理和物业管理等功能,这种系统力求为用户提供高效便捷的服务体验。无论是工业园、产业园还是写字楼、公寓,租房管理系统…...
Ollama教程:轻松上手本地大语言模型部署
Ollama教程:轻松上手本地大语言模型部署 在大语言模型(LLM)飞速发展的今天,越来越多的开发者希望能够在本地部署和使用这些模型,以便更好地控制数据隐私和计算资源。Ollama作为一个开源工具,旨在简化大语言…...

Baklib推动数字化内容管理解决方案助力企业数字化转型
内容概要 在当今信息爆炸的时代,数字化内容管理成为企业提升效率和竞争力的关键。企业在面对大量数据时,如何高效地存储、分类与检索信息,直接关系到其经营的成败。数字化内容管理不仅限于简单的文档存储,更是整合了文档、图像、…...
DeepSeek-R1 论文. Reinforcement Learning 通过强化学习激励大型语言模型的推理能力
论文链接: [2501.12948] DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning 实在太长,自行扔到 Model 里,去翻译去提问吧。 工作原理: 主要技术,就是训练出一些专有用途小模型&…...
DOM 操作入门:HTML 元素操作与页面事件处理
DOM 操作入门:HTML 元素操作与页面事件处理 DOM 操作入门:HTML 元素操作与页面事件处理什么是 DOM?1. 如何操作 HTML 元素?1.1 使用 `document.getElementById()` 获取单个元素1.2 使用 `document.querySelector()` 和 `document.querySelectorAll()` 获取多个元素1.3 创建…...
使用 HTTP::Server::Simple 实现轻量级 HTTP 服务器
在Perl中,HTTP::Server::Simple 模块提供了一种轻量级的方式来实现HTTP服务器。该模块简单易用,适合快速开发和测试HTTP服务。本文将详细介绍如何使用 HTTP::Server::Simple 模块创建和配置一个轻量级HTTP服务器。 安装 HTTP::Server::Simple 首先&…...
C++滑动窗口技术深度解析:核心原理、高效实现与高阶应用实践
目录 一、滑动窗口的核心原理 二、滑动窗口的两种类型 1. 固定大小的窗口 2. 可变大小的窗口 三、实现细节与关键点 1. 窗口的初始化 2. 窗口的移动策略 3. 结果的更新时机 四、经典问题与代码示例 示例 1:和 ≥ target 的最短子数组(可变窗口…...
基于构件的软件开发方法
摘要: 本人在2023年1月参与广东某公司委托我司开发的“虚拟电厂”项目,主要负责整体架构设计和中间件的选型,该项目为新型电力存储、电力调度、能源交易提供一整套的软件系统,包括设备接入、负载预测、邀约竞价、用户设备调控等功能。本项目以“虚拟电厂”项目为例,讨论基…...
网站快速收录:如何设置robots.txt文件?
本文转自:百万收录网 原文链接:https://www.baiwanshoulu.com/34.html 为了网站快速收录而合理设置robots.txt文件,需要遵循一定的规则和最佳实践。robots.txt文件是一个纯文本文件,它告诉搜索引擎爬虫哪些页面可以访问ÿ…...

OpenGL学习笔记(六):Transformations 变换(变换矩阵、坐标系统、GLM库应用)
文章目录 向量变换使用GLM变换(缩放、旋转、位移)将变换矩阵传递给着色器坐标系统与MVP矩阵三维变换绘制3D立方体 & 深度测试(Z-buffer)练习1——更多立方体 现在我们已经知道了如何创建一个物体、着色、加入纹理。但它们都还…...

8.攻防世界Web_php_wrong_nginx_config
进入题目页面如下 尝试弱口令密码登录 一直显示网站建设中,尝试无果,查看源码也没有什么特别漏洞存在 用Kali中的dirsearch扫描根目录试试 命令: dirsearch -u http://61.147.171.105:53736/ -e* 登录文件便是刚才登录的界面打开robots.txt…...

【优先算法】专题——位运算
在讲解位运算之前我们来总结一下常见的位运算 一、常见的位运算 1.基础为运算 << &:有0就是0 >> |:有1就是1 ~ ^:相同为0,相异位1 /无进位相加 2.给一个数 n,确定它的二进制表示…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...

(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...

算法笔记2
1.字符串拼接最好用StringBuilder,不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

rm视觉学习1-自瞄部分
首先先感谢中南大学的开源,提供了很全面的思路,减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接:https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架: 代码框架结构:readme有…...
Neo4j 完全指南:从入门到精通
第1章:Neo4j简介与图数据库基础 1.1 图数据库概述 传统关系型数据库与图数据库的对比图数据库的核心优势图数据库的应用场景 1.2 Neo4j的发展历史 Neo4j的起源与演进Neo4j的版本迭代Neo4j在图数据库领域的地位 1.3 图数据库的基本概念 节点(Node)与关系(Relat…...