【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.14 内存映射:处理超大型数组的终极方案
2.14 内存映射:处理超大型数组的终极方案
目录
2.14.1 内存映射的基本原理
内存映射(Memory-Mapped Files, mmap)是一种将文件内容映射到内存中的技术。通过这种方式,可以方便地在内存中对大文件进行读写操作,而不需要将整个文件加载到内存中。这在处理超大型数组时非常有用,特别是处理 TB 级数据。
- 内存映射的定义:内存映射的基本概念和工作原理。
- NumPy mplab:NumPy 中如何使用内存映射。
- 应用场景:内存映射在数据科学和机器学习中的应用场景。
2.14.2 磁盘-内存数据交换
内存映射的核心机制是磁盘和内存之间的数据交换。通过这种方式,可以高效地处理超出内存容量的大型数据集。
- 数据交换过程:磁盘-内存数据交换的详细步骤。
- 性能优化:如何优化数据交换过程以提高性能。
- 实际案例:一个处理大型数据集的实际案例。
import numpy as np
import os# 创建一个 10TB 的文件
filename = 'large_array.npy'
size = 10 * 1024 * 1024 * 1024 * 1024 # 10TB
shape = (size // 4,) # 假设每个元素是 4 字节的整数# 如果文件不存在,创建并初始化
if not os.path.exists(filename):np.save(filename, np.zeros(shape, dtype=np.int32))# 使用 memmap 创建内存映射数组
large_array = np.memmap(filename, dtype='int32', mode='r+', shape=shape)# 读取部分数据
partial_data = large_array[:10000]
print(f"读取的部分数据: \n{partial_data}")# 写入部分数据
large_array[10000:20000] = np.arange(10000, 20000)
print(f"写入的部分数据: \n{large_array[10000:20000]}")# 关闭内存映射文件
large_array.flush()
2.14.3 读写锁机制
内存映射在多线程或多进程环境中需要特别注意读写锁机制,以确保数据的一致性和并发安全。
- 读写锁的基本概念:读写锁的工作原理和应用场景。
- NumPy memmap 读写锁:如何在 NumPy 中使用读写锁。
- 性能对比:读写锁对性能的影响。
import numpy as np
import os
import threading
import multiprocessing# 创建一个 1GB 的文件
filename = 'lock_array.npy'
size = 1 * 1024 * 1024 * 1024 # 1GB
shape = (size // 4,) # 假设每个元素是 4 字节的整数# 如果文件不存在,创建并初始化
if not os.path.exists(filename):np.save(filename, np.zeros(shape, dtype=np.int32))# 使用 memmap 创建内存映射数组
lock_array = np.memmap(filename, dtype='int32', mode='r+', shape=shape)# 创建一个线程锁
read_write_lock = threading.Lock()def read_data(index):with read_write_lock:data = lock_array[index:index+100]print(f"线程读取的部分数据: \n{data}")def write_data(index, value):with read_write_lock:lock_array[index:index+100] = valueprint(f"线程写入的部分数据: \n{lock_array[index:index+100]}")# 创建并启动读取线程
read_thread = threading.Thread(target=read_data, args=(1000,))
read_thread.start()# 创建并启动写入线程
write_thread = threading.Thread(target=write_data, args=(2000, np.arange(100)))
write_thread.start()# 等待所有线程完成
read_thread.join()
write_thread.join()# 关闭内存映射文件
lock_array.flush()
2.14.4 气象数据案例分析
气象数据集通常非常庞大,内存映射技术可以显著提高处理这些数据的效率。通过一个具体的气象数据案例,展示如何使用 memmap
高效处理大型数据集。
- 气象数据的基本特征:气象数据集的特点和常见数据格式。
- 传统方法的问题:使用传统方法处理气象数据时的性能问题。
- 使用 memmap 优化:如何使用
memmap
优化气象数据处理。 - 性能对比:优化前后性能的对比。
import numpy as np
import time# 假设有一个 10TB 的气象数据文件
filename = 'weather_data.npy'
size = 10 * 1024 * 1024 * 1024 * 1024 # 10TB
shape = (size // 4,) # 假设每个元素是 4 字节的整数# 如果文件不存在,创建并初始化
if not os.path.exists(filename):np.save(filename, np.zeros(shape, dtype=np.int32))# 使用 memmap 创建内存映射数组
weather_array = np.memmap(filename, dtype='int32', mode='r+', shape=shape)# 传统方法读取数据
def traditional_read_data(data, index, size):return data[index:index+size]start_time = time.time()
traditional_data = traditional_read_data(np.load(filename, mmap_mode='r+'), 10000, 10000)
traditional_time = time.time() - start_time
print(f"传统方法读取数据: \n{traditional_data}")
print(f"传统方法用时: {traditional_time:.2f}秒")# 使用 memmap 读取数据
def memmap_read_data(data, index, size):return data[index:index+size]start_time = time.time()
memmap_data = memmap_read_data(weather_array, 10000, 10000)
memmap_time = time.time() - start_time
print(f"使用 memmap 读取数据: \n{memmap_data}")
print(f"使用 memmap 用时: {memmap_time:.2f}秒")# 性能对比
speedup = traditional_time / memmap_time
print(f"使用 memmap 性能提升: {speedup:.2f}倍")
2.14.5 最佳实践与注意事项
在实际应用中,合理使用 memmap
可以显著提高代码的性能和稳定性。以下是一些最佳实践和注意事项。
- 合理设置文件大小:根据数据集的大小和系统资源合理设置文件大小。
- 数据格式的选择:选择合适的数据格式以优化性能。
- 并发控制:确保在多线程或多进程环境中的并发安全。
- 内存管理:注意内存管理,避免内存泄露。
- 错误处理:如何处理常见的错误和异常情况。
import numpy as np
import os# 合理设置文件大小
def create_memmap_file(filename, size, dtype):shape = (size // np.dtype(dtype).itemsize,)if not os.path.exists(filename):np.save(filename, np.zeros(shape, dtype=dtype))return np.memmap(filename, dtype=dtype, mode='r+', shape=shape)# 选择合适的数据格式
memmap_array = create_memmap_file('data_with_dtype.npy', 1 * 1024 * 1024 * 1024 * 1024, 'float32') # 1TB float32 数据
print(f"数据格式: {memmap_array.dtype}")# 并发控制
def safe_read_data(data, index, size, lock):with lock:return data[index:index+size]def safe_write_data(data, index, size, value, lock):with lock:data[index:index+size] = valueread_write_lock = threading.Lock()# 读取数据
memmap_data = safe_read_data(memmap_array, 10000, 10000, read_write_lock)
print(f"安全读取的数据: \n{memmap_data}")# 写入数据
safe_write_data(memmap_array, 20000, 10000, np.arange(10000), read_write_lock)
print(f"安全写入的数据: \n{memmap_array[20000:30000]}")# 内存管理
def manage_memory(data, threshold=1 * 1024 * 1024 * 1024): # 1GBif data.nbytes > threshold:data.flush()data = None # 释放内存return datamemmap_array = manage_memory(memmap_array)# 错误处理
def handle_errors(data, index, size):try:return data[index:index+size]except ValueError as e:print(f"错误: {e}")return Nonememmap_data = handle_errors(memmap_array, 10000, 10000)
print(f"处理错误后的数据: \n{memmap_data}")
2.14.6 总结
- 关键收获:理解内存映射的基本原理和用途,掌握磁盘-内存数据交换的机制,了解读写锁的使用方法,通过气象数据案例展示
memmap
的性能优势,遵循最佳实践和注意事项。 - 应用场景:内存映射在处理超大型数组、数据流处理、实时数据分析等场景中的应用。
- 性能优化:合理设置文件大小和数据格式,使用读写锁机制,优化内存管理,处理常见错误。
通过本文,我们深入探讨了 NumPy 中内存映射技术的使用方法和原理,包括磁盘-内存数据交换、读写锁机制、气象数据案例分析以及最佳实践与注意事项。希望这些内容能帮助你在实际开发中高效处理大型数据集,提高代码性能,避免常见的内存陷阱。
2.14.7 参考文献
参考资料 | 链接 |
---|---|
《NumPy Beginner’s Guide》 | NumPy Beginner’s Guide |
《Python for Data Analysis》 | Python for Data Analysis |
NumPy 官方文档 | NumPy Reference |
Stack Overflow | What is a memory-mapped file? |
Medium | Efficiently Handling Large Data with NumPy Memmap |
Python Memory Management | Python Memory Management |
SciPy 官方文档 | SciPy Memory Efficiency |
Wikipedia | Memory-mapped file |
《高性能Python》 | High Performance Python |
《Python数据科学手册》 | Python Data Science Handbook |
Intel MKL | Intel Math Kernel Library (MKL) |
OpenBLAS | OpenBLAS Documentation |
数据科学博客 | Handling Large Datasets with Numpy Memmap |
GitHub 代码示例 | NumPy Memmap Examples |
这篇文章包含了详细的原理介绍、代码示例、源码注释以及案例等。希望这对您有帮助。如果有任何问题请随私信或评论告诉我。
相关文章:

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.14 内存映射:处理超大型数组的终极方案
2.14 内存映射:处理超大型数组的终极方案 目录 #mermaid-svg-G91Kn9O4eN2k8xEo {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-G91Kn9O4eN2k8xEo .error-icon{fill:#552222;}#mermaid-svg-G91Kn9O4eN2k…...

【C++】STL——vector的使用
目录 💕1.vector介绍 💕2.vector的基本用法 💕3.vector功能的具体用法 (讲解) 💕4.vector——size,capacity函数的使用 (简单略讲) 💕5.resizeÿ…...
springboot/ssm互联网智慧医院体检平台web健康体检管理系统Java代码编写
springboot/ssm互联网智慧医院体检平台web健康体检管理系统Java代码编写 基于springboot(可改ssm)vue项目 开发语言:Java 框架:springboot/可改ssm vue JDK版本:JDK1.8(或11) 服务器:tomcat 数据库&am…...

介绍一下Mybatis的Executor执行器
Executor执行器是用来执行我们的具体的SQL操作的 有三种基本的Executor执行器: SimpleExecutor简单执行器 每执行一次update或select,就创建一个Statement对象,用完立刻关闭Statement对象 ReuseExecutor可重用执行器 可重复利用Statement…...

Wide Deep 模型:记忆能力与泛化能力
实验和完整代码 完整代码实现和jupyter运行:https://github.com/Myolive-Lin/RecSys--deep-learning-recommendation-system/tree/main 引言 Wide & Deep 模型是一种结合了线性模型(Wide)和深度神经网络(Deep)的混…...

Hot100之矩阵
73矩阵置零 题目 思路解析 收集0位置所在的行和列 然后该行全部初始化为0 该列全部初始化为0 代码 class Solution {public void setZeroes(int[][] matrix) {int m matrix.length;int n matrix[0].length;List<Integer> list1 new ArrayList<>();List<…...
Python语言的安全开发
Python语言的安全开发 引言 在信息技术迅速发展的今天,网络安全问题愈发凸显。随着Python语言的广泛应用,尤其是在数据分析、人工智能、Web开发等领域,其安全问题越来越受到重视。Python作为一门高效且易于学习的编程语言,虽然在…...

蓝桥杯刷题DAY3:Horner 法则 前缀和+差分数组 贪心
所谓刷题,最重要的就是细心 📌 题目描述 在 X 进制 中,每一数位的进制不固定。例如: 最低位 采用 2 进制,第二位 采用 10 进制,第三位 采用 8 进制, 则 X 进制数 321 的十进制值为ÿ…...

java项目验证码登录
1.依赖 导入hutool工具包用于创建验证码 <dependency><groupId>cn.hutool</groupId><artifactId>hutool-all</artifactId><version>5.5.2</version></dependency> 2.测试 生成一个验证码图片(生成的图片浏览器可…...

手写MVVM框架-环境搭建
项目使用 webpack 进行进行构建,初始化步骤如下: 1.创建npm项目执行npm init 一直下一步就行 2.安装webpack、webpack-cli、webpack-dev-server,html-webpack-plugin npm i -D webpack webpack-cli webpack-dev-server html-webpack-plugin 3.配置webpac…...

2025年2月2日(网络编程 tcp)
tcp 循环服务 import socketdef main():# 创建 socket# 绑定tcp_server socket.socket(socket.AF_INET, socket.SOCK_STREAM)tcp_server.bind(("", 8080))# socket 转变为被动tcp_server.listen(128)while True:# 产生专门为链接进来的客户端服务的 socketprint(&qu…...
【Docker项目实战】使用Docker部署MinIO对象存储(详细教程)
【Docker项目实战】使用Docker部署MinIO对象存储 前言一、 MinIO介绍1.1 MinIO简介1.2 主要特点1.3 主要使用场景二、本次实践规划2.1 本地环境规划2.2 本次实践介绍三、本地环境检查3.1 检查Docker服务状态3.2 检查Docker版本3.3 检查docker compose 版本四、下载MinIO镜像五、…...

使用ollama本地部署Deepseek r1
1、下载ollama 在浏览器地址输入:https://ollama.com/ 选择windows版本的下载 2、安装ollama 3、运行ollama 安装完成后,打开命令行工具win r 在命令行输入:ollama 4、使用ollama下载并部署Deepseed r1 在ollama网站,下载…...

Unity飞行代码 超仿真 保姆级教程
本文使用Rigidbody控制飞机,基本不会穿模。 效果 飞行效果 这是一条优雅的广告 如果你也在开发飞机大战等类型的飞行游戏,欢迎在主页搜索博文并参考。 搜索词:Unity游戏(Assault空对地打击)开发。 脚本编写 首先是完整代码。 using System.Co…...
DeepSeek蒸馏模型:轻量化AI的演进与突破
目录 引言 一、知识蒸馏的技术逻辑与DeepSeek的实践 1.1 知识蒸馏的核心思想 1.2 DeepSeek的蒸馏架构设计 二、DeepSeek蒸馏模型的性能优势 2.1 效率与成本的革命性提升 2.2 性能保留的突破 2.3 场景适应性的扩展 三、应用场景与落地实践 3.1 智能客服系统的升级 3.2…...
使用 sunshine+moonlight 配置串流服务无法使用特殊键
最近了解到串流技术,使用的方案是 sunshine 为串流服务端,moonlight 为客户端,分别在 ipad,android,tv 端安装。 存在的问题 不管说什么平台都会有特殊键无法使用的问题,最初我发现在安卓电视,…...
5.角色基础移动
能帮到你的话,就给个赞吧 😘 文章目录 角色的xyz轴与移动方向拌合输入轴值add movement inputget controller rotationget right vectorget forward vector 发现模型的旋转改变后,xyz轴也会改变,所以需要旋转值来计算xyz轴方向。 …...

单细胞-第四节 多样本数据分析,下游画图
文件在单细胞\5_GC_py\1_single_cell\2_plots.Rmd 1.细胞数量条形图 rm(list ls()) library(Seurat) load("seu.obj.Rdata")dat as.data.frame(table(Idents(seu.obj))) dat$label paste(dat$Var1,dat$Freq,sep ":") head(dat) library(ggplot2) lib…...
Linux的循环,bash的循环
Linux的循环,bash的循环 在 Linux 系统中,Bash 循环是最常用的循环实现方式(Bash 是 Linux 默认的 Shell),但广义上“Linux 的循环”可能涉及其他 Shell 或编程语言的循环结构。以下是 Bash 循环的详细解析及其在 Linux 环境中的…...

【DeepSeek开发】Python实现股票数据可视化
代码: Github:Python实现股票数据可视化代码https://github.com/magolan2000/Data-visualization/tree/master 软件环境:PyCharm 2022.3.1 数据来源:akshare 最近DeepSeek可谓是热度不断,因此想评判一下DeepSeek的编程…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...

Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...

Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...

【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...
jmeter聚合报告中参数详解
sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample(样本数) 表示测试中发送的请求数量,即测试执行了多少次请求。 单位,以个或者次数表示。 示例:…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…...