pytorch实现门控循环单元 (GRU)
人工智能例子汇总:AI常见的算法和例子-CSDN博客


| 特性 | GRU | LSTM |
|---|---|---|
| 计算效率 | 更快,参数更少 | 相对较慢,参数更多 |
| 结构复杂度 | 只有两个门(更新门和重置门) | 三个门(输入门、遗忘门、输出门) |
| 处理长时依赖 | 一般适用于中等长度依赖 | 更适合处理超长时序依赖 |
| 训练速度 | 训练更快,梯度更稳定 | 训练较慢,占用更多内存 |
例子:
import torch
import torch.nn as nn
import torch.optim as optim
import random
import matplotlib.pyplot as plt# 🏁 迷宫环境(5×5)
class MazeEnv:def __init__(self, size=5):self.size = sizeself.state = (0, 0) # 起点self.goal = (size-1, size-1) # 终点self.actions = [(0,1), (0,-1), (1,0), (-1,0)] # 右、左、下、上def reset(self):self.state = (0, 0) # 重置起点return self.statedef step(self, action):dx, dy = self.actions[action]x, y = self.statenx, ny = max(0, min(self.size-1, x+dx)), max(0, min(self.size-1, y+dy))reward = 1 if (nx, ny) == self.goal else -0.1done = (nx, ny) == self.goalself.state = (nx, ny)return (nx, ny), reward, done# 🤖 GRU 策略网络
class GRUPolicy(nn.Module):def __init__(self, input_size, hidden_size, output_size):super(GRUPolicy, self).__init__()self.gru = nn.GRU(input_size, hidden_size, batch_first=True)self.fc = nn.Linear(hidden_size, output_size)def forward(self, x, hidden):out, hidden = self.gru(x, hidden)out = self.fc(out[:, -1, :]) # 只取最后时间步return out, hidden# 🎯 训练参数
env = MazeEnv(size=5)
policy = GRUPolicy(input_size=2, hidden_size=16, output_size=4)
optimizer = optim.Adam(policy.parameters(), lr=0.01)
loss_fn = nn.CrossEntropyLoss()# 🎓 训练
num_episodes = 500
epsilon = 1.0 # 初始的ε值,控制探索的概率
epsilon_min = 0.01 # 最小ε值
epsilon_decay = 0.995 # ε衰减率
best_path = [] # 用于存储最佳路径for episode in range(num_episodes):state = env.reset()hidden = torch.zeros(1, 1, 16) # GRU 初始状态states, actions, rewards = [], [], []logits_list = [] for _ in range(20): # 最多 20 步state_tensor = torch.tensor([[state[0], state[1]]], dtype=torch.float32).unsqueeze(0)logits, hidden = policy(state_tensor, hidden)logits_list.append(logits)# ε-greedy 策略if random.random() < epsilon:action = random.choice(range(4)) # 随机选择动作else:action = torch.argmax(logits, dim=1).item() # 选择最大值对应的动作next_state, reward, done = env.step(action)states.append(state)actions.append(action)rewards.append(reward)if done:print(f"Episode {episode} - Reached Goal!")# 找到最优路径best_path = states + [next_state] # 当前 episode 的路径breakstate = next_state# 计算损失logits = torch.cat(logits_list, dim=0) # (T, 4)action_tensor = torch.tensor(actions, dtype=torch.long) # (T,)loss = loss_fn(logits, action_tensor) optimizer.zero_grad()loss.backward()optimizer.step()# 衰减 εepsilon = max(epsilon_min, epsilon * epsilon_decay)if episode % 100 == 0:print(f"Episode {episode}, Loss: {loss.item():.4f}, Epsilon: {epsilon:.4f}")# 🧐 确保 best_path 已经记录
if len(best_path) == 0:print("No path found during training.")
else:print(f"Best path: {best_path}")# 🚀 测试路径(只绘制最佳路径)
fig, ax = plt.subplots(figsize=(6,6))# 初始化迷宫图
maze = [[0 for _ in range(5)] for _ in range(5)] # 5×5 迷宫
ax.imshow(maze, cmap="coolwarm", origin="upper")# 画网格
ax.set_xticks(range(5))
ax.set_yticks(range(5))
ax.grid(True, color="black", linewidth=0.5)# 画出最佳路径(红色)
for (x, y) in best_path:ax.add_patch(plt.Rectangle((y, x), 1, 1, color="red", alpha=0.8))# 画起点和终点
ax.text(0, 0, "S", ha="center", va="center", fontsize=14, color="white", fontweight="bold")
ax.text(4, 4, "G", ha="center", va="center", fontsize=14, color="white", fontweight="bold")plt.title("GRU RL Agent - Best Path")
plt.show()
相关文章:
pytorch实现门控循环单元 (GRU)
人工智能例子汇总:AI常见的算法和例子-CSDN博客 特性GRULSTM计算效率更快,参数更少相对较慢,参数更多结构复杂度只有两个门(更新门和重置门)三个门(输入门、遗忘门、输出门)处理长时依赖一般适…...
Word List 2
词汇颜色标识解释 词汇表中的生词 词汇表中的词组成的搭配、派生词 例句中的生词 我自己写的生词(用于区分易混淆的词,无颜色标识) 不认识的单词或句式 单词的主要汉语意思 不太理解的句子语法和结构 Word List 2 英文音标中文regi…...
机器学习常用包numpy篇(四)函数运算
目录 前言 一、三角函数 二、双曲函数 三、数值修约 四、 求和、求积与差分 五、 指数与对数 六、算术运算 七、 矩阵与向量运算 八、代数运算 九、 其他数学工具 总结 前言 Python 的原生运算符可实现基础数学运算(加减乘除、取余、取整、幂运算&#…...
CSS in JS
css in js css in js 的核心思想是:用一个 JS 对象来描述样式,而不是 css 样式表。 例如下面的对象就是一个用于描述样式的对象: const styles {backgroundColor: "#f40",color: "#fff",width: "400px",he…...
TCP 丢包恢复策略:代价权衡与优化迷局
网络物理层丢包是一种需要偿还的债务,可以容忍低劣的传输质量,这为 UDP 类服务提供了空间,而对于 TCP 类服务,可以用另外两类代价来支付: 主机端采用轻率的 GBN 策略恢复丢包,节省 CPU 资源,但…...
面经--C语言——内存泄漏、malloc和new的区别 .c文件怎么转换为可执行程序 uart和usart的区别 继承的访问权限总结
文章目录 内存泄漏预防内存泄漏的方法: malloc和new的区别.c文件怎么转换为可执行程序uart和usart的区别继承的访问权限总结访问控制符总结1. **public**:2. **protected**:3. **private**:继承类型: 内存泄漏 内存泄漏是指程序在运行时动态分配内存后&…...
Denavit-Hartenberg DH MDH坐标系
Denavit-Hartenberg坐标系及其规则详解 6轴协作机器人的MDH模型详细图_6轴mdh-CSDN博客 N轴机械臂的MDH正向建模,及python算法_mdh建模-CSDN博客 运动学3-----正向运动学 | 鱼香ROS 机器人学:MDH建模 - 哆啦美 - 博客园 机械臂学习——标准DH法和改进MDH…...
力扣动态规划-20【算法学习day.114】
前言 ###我做这类文章一个重要的目的还是记录自己的学习过程,我的解析也不会做的非常详细,只会提供思路和一些关键点,力扣上的大佬们的题解质量是非常非常高滴!!! 习题 1.网格中的最小路径代价 题目链接…...
计算机视觉-边缘检测
一、边缘 1.1 边缘的类型 ①实体上的边缘 ②深度上的边缘 ③符号的边缘 ④阴影产生的边缘 不同任务关注的边缘不一样 1.2 提取边缘 突变-求导(求导也是一种卷积) 近似,1(右边的一个值-自己可以用卷积做) 该点f(x,y)…...
文字加持:让 OpenCV 轻松在图像中插上文字
前言 在很多图像处理任务中,我们不仅需要提取图像信息,还希望在图像上加上一些文字,或是标注,或是动态展示。正如在一幅画上添加一个标语,或者在一个视频上加上动态字幕,cv2.putText 就是这个“文字魔术师”,它能让我们的图像从“沉默寡言”变得生动有趣。 今天,我们…...
掌握 HTML5 多媒体标签:如何在所有浏览器中顺利嵌入视频与音频
系列文章目录 01-从零开始学 HTML:构建网页的基本框架与技巧 02-HTML常见文本标签解析:从基础到进阶的全面指南 03-HTML从入门到精通:链接与图像标签全解析 04-HTML 列表标签全解析:无序与有序列表的深度应用 05-HTML表格标签全面…...
在Mac mini M4上部署DeepSeek R1本地大模型
在Mac mini M4上部署DeepSeek R1本地大模型 安装ollama 本地部署,我们可以通过Ollama来进行安装 Ollama 官方版:【点击前往】 Web UI 控制端【点击安装】 如何在MacOS上更换Ollama的模型位置 默认安装时,OLLAMA_MODELS 位置在"~/.o…...
【电脑系统】电脑突然(蓝屏)卡死发出刺耳声音
文章目录 前言问题描述软件解决方案尝试硬件解决方案尝试参考文献 前言 在 更换硬盘 时遇到的问题,有时候只有卡死没有蓝屏 问题描述 更换硬盘后,电脑用一会就卡死,蓝屏,显示蓝屏代码 UNEXPECTED_STORE_EXCEPTION 软件解决方案…...
Docker使用指南(二)——容器相关操作详解(实战案例教学,创建/使用/停止/删除)
目录 1.容器操作相关命令编辑 案例一: 案例二: 容器常用命令总结: 1.查看容器状态: 2.删除容器: 3.进入容器: 二、Docker基本操作——容器篇 1.容器操作相关命令 下面我们用两个案例来具体实操一…...
Java中的常见对象类型解析
在Java开发中,数据的组织和传递是一个重要的概念。为了确保代码的清晰性、可维护性和可扩展性,我们通常会根据不同的用途,设计和使用不同类型的对象。这些对象的作用各不相同,但它们共同为构建高效、模块化的软件架构提供支持。 …...
Dijkstra算法解析
Dijkstra算法,用于求解图中从一个起点到其他所有节点的最短路径。解决单源最短路径问题的有效方法。 条件 有向 带权路径 时间复杂度 O(n平方) 方法步骤 1 把图上的点分为两个集合 要求的起点 和除了起点之外的点 。能直达的写上权值 不…...
C++ Primer 多维数组
欢迎阅读我的 【CPrimer】专栏 专栏简介:本专栏主要面向C初学者,解释C的一些基本概念和基础语言特性,涉及C标准库的用法,面向对象特性,泛型特性高级用法。通过使用标准库中定义的抽象设施,使你更加适应高级…...
maven mysql jdk nvm node npm 环境安装
安装JDK 1.8 11 环境 maven环境安装 打开网站 下载 下载zip格式 解压 自己创建一个maven库 以后在idea 使用maven时候重新设置一下 这三个地方分别设置 这时候maven才算设置好 nvm 管理 npm nodejs nvm下载 安装 Releases coreybutler/nvm-windows GitHub 一键安装且若有…...
SQL Server中RANK()函数:处理并列排名与自然跳号
RANK()是SQL Server的窗口函数,为结果集中的行生成排名。当出现相同值时,后续排名会跳过被占用的名次,形成自然间隔。与DENSE_RANK()的关键区别在于是否允许排名值连续。 语法: RANK() OVER ([PARTITION BY 分组列]ORDER BY 排序…...
如何运行Composer安装PHP包 安装JWT库
1. 使用Composer Composer是PHP的依赖管理工具,它允许你轻松地安装和管理PHP包。对于JWT,你可以使用firebase/php-jwt这个库,这是由Firebase提供的官方库。 安装Composer(如果你还没有安装的话): 访问Co…...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
React第五十七节 Router中RouterProvider使用详解及注意事项
前言 在 React Router v6.4 中,RouterProvider 是一个核心组件,用于提供基于数据路由(data routers)的新型路由方案。 它替代了传统的 <BrowserRouter>,支持更强大的数据加载和操作功能(如 loader 和…...
STM32+rt-thread判断是否联网
一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
MFC 抛体运动模拟:常见问题解决与界面美化
在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...
