【蓝桥】动态规划-简单-破损的楼梯
题目

解题思路
完整代码
#include <bits/stdc++.h>
using namespace std;
const int N=1e5+9;
const long long p=1e9+7;
long long dp[N];//dp[i]表示走到第i级台阶的方案数
bool broken[N];//broken代表破损台阶的数组
int main()
{int n,m;cin>>n>>m;for(int i=1;i<=m;i++){int x;cin>>x;broken[x]=true;//如果第x级台阶破损了,那就设置成true}dp[0]=1;//第1级台阶比较特殊,因为它只有一种走法,就是从第0级迈到第1级,所以单独列出if(!broken[1])//如果第一级台阶没有破损{dp[1]=1;}
//破损默认dp[1]为0for(int i=2;i<=n;i++)//如果第1级台阶坏了,那就从第2级台阶开始{if(broken[i]){continue;}dp[i]=(dp[i-1]+dp[i-2])%p;//因为一次可以迈1—2个台阶(即可以从i-1或i-2级迈到第i级),所以第i级的方案数等于i-2级的方案数 + i-1级的方案数}cout<<dp[n]<<endl;return 0;
}
内存图助解
初始状态
在读取输入之前,flag 和 dp 数组都被初始化为 0,n 和 m 未赋值。
n: 未初始化
m: 未初始化flag: [0, 0, 0, 0, 0, 0, 0] // flag[0] 到 flag[6]
dp: [0, 0, 0, 0, 0, 0, 0] // dp[0] 到 dp[6]
读取输入后的状态
读取 n = 6 和 m = 1 后,标记破损点 3。
n: 6
m: 1flag: [0, 0, 0, 1, 0, 0, 0] // flag[3] 被标记为 1
dp: [0, 0, 0, 0, 0, 0, 0] // dp 数组未初始化
n: 6
m: 1flag: [0, 0, 0, 1, 0, 0, 0]
dp: [1, 0, 0, 0, 0, 0, 0] // dp[0] = 1,因为起点不是破损点
第一步:计算 dp[1]
-
flag[1] = 0,不是破损点。 -
dp[1] = dp[0] = 1
n: 6
m: 1flag: [0, 0, 0, 1, 0, 0, 0]
dp: [1, 1, 0, 0, 0, 0, 0]
第二步:计算 dp[2]
-
flag[2] = 0,不是破损点。 -
dp[2] = dp[1] + dp[0] = 1 + 1 = 2
n: 6
m: 1flag: [0, 0, 0, 1, 0, 0, 0]
dp: [1, 1, 2, 0, 0, 0, 0]
第三步:计算 dp[3]
-
flag[3] = 1,是破损点,跳过。 -
dp[3] = 0
n: 6
m: 1flag: [0, 0, 0, 1, 0, 0, 0]
dp: [1, 1, 2, 0, 0, 0, 0]
最终结果为
n: 6
m: 1flag: [0, 0, 0, 1, 0, 0, 0]
dp: [1, 1, 2, 0, 2, 2, 4]
输出 dp[6],即到达终点的合法走法数量4
相关文章:
【蓝桥】动态规划-简单-破损的楼梯
题目 解题思路 完整代码 #include <bits/stdc.h> using namespace std; const int N1e59; const long long p1e97; long long dp[N];//dp[i]表示走到第i级台阶的方案数 bool broken[N];//broken代表破损台阶的数组 int main() {int n,m;cin>>n>>m;for(int …...
如何自定义软件安装路径及Scoop包管理器使用全攻略
如何自定义软件安装路径及Scoop包管理器使用全攻略 一、为什么无法通过WingetUI自定义安装路径? 问题背景: WingetUI是Windows包管理器Winget的图形化工具,但无法直接修改软件的默认安装路径。原因如下: Winget设计限制…...
107,【7】buuctf web [CISCN2019 华北赛区 Day2 Web1]Hack World
这次先不进入靶场 看到红框里面的话就想先看看uuid是啥 定义与概念 UUID 是 Universally Unique Identifier 的缩写,即通用唯一识别码。它是一种由数字和字母组成的 128 位标识符,在理论上可以保证在全球范围内的唯一性。UUID 的设计目的是让分布式系…...
STM32 ADC单通道配置
硬件电路 接线图: ADC基本结构图 代码配置 根据基本结构框图 1.定义结构体变量 //定义结构体变量 GPIO_InitTypeDef GPIO_InitStructure;//定义GPIO结构体变量 ADC_InitTypeDef ADC_InitStructure; //定义ADC结构体变量 2.开启RCC时钟 ADC、GPIO的时钟&#x…...
【技海登峰】Kafka漫谈系列(二)Kafka高可用副本的数据同步与选主机制
【技海登峰】Kafka漫谈系列(二)Kafka高可用副本的数据同步与选主机制 一. 数据同步 在之前的学习中有了副本Replica的概念,解决了数据备份的问题。我们还需要面临一个设计难题即:如何处理分区中Leader与Follwer节点数据同步不匹配问题所带来的风险,这也是保证数据高可用的…...
Spring的三级缓存如何解决循环依赖问题
循环依赖问题是在对象之间存在相互依赖关系,形成一个闭环,导致无法准确的完成对象的创建和初始化,当两个或多个对象彼此之间相互引用,这种相互引用形成一个循环时,就可能出现循环依赖问题。 在 Spring 框架中…...
Ext文件系统
文件内容属性 被打开的文件在内存中,没有被打开的文件在磁盘里文件系统的工作就是根据路径帮我们找到在磁盘上的文件 磁盘(硬件) 磁盘的存储结构 磁头在传动臂的运动下共同进退,向磁盘写入的时候是向柱面批量写入的 OS文件系统访…...
回溯算法---数独问题
回溯算法理论基础 回溯和递归密不可分,有回溯就有递归,所谓回溯就是基于一个叉树,可能是二叉树或者是三叉树,从root节点开始深度优先搜索遍历节点,当遍历到一个子节点时,回溯到上一个根节点选择另外一个子…...
蓝桥杯python基础算法(2-1)——排序
目录 一、排序 二、例题 P3225——宝藏排序Ⅰ 三、各种排序比较 四、例题 P3226——宝藏排序Ⅱ 一、排序 (一)冒泡排序 基本思想:比较相邻的元素,如果顺序错误就把它们交换过来。 (二)选择排序 基本思想…...
【课程笔记】信息隐藏与数字水印
文章总览:YuanDaiMa2048博客文章总览 【课程笔记】信息隐藏与数字水印 信号处理基础知识隐写系统隐写算法性能指标音频信号处理基础数字音频概念人类听觉系统与语音质量评价信息隐藏的原理数字指纹与版权保护盲水印与非盲水印私钥水印与公钥水印信息隐藏的研究层次信息隐藏与数…...
Page Assist实现deepseek离线部署的在线搜索功能
前面文章Mac 基于Ollama 本地部署DeepSeek离线模型 实现了deepseek的离线部署,但是部署完成虽然可以进行问答和交互,也有thinking过程,但是没办法像官方一样进行联网搜索。今天我们介绍一款浏览器插件Page Assist来实现联网搜索,完…...
composeUI中Box 和 Surface的区别
在 Jetpack Compose 中,Box 和 Surface 都是常用的布局组件,但它们的用途和功能有所不同。 Box 组件: 功能:Box 是一个用于将子组件堆叠在一起的布局容器,类似于传统 Android 中的 FrameLayout。用途:适用…...
【LeetCode】5. 贪心算法:买卖股票时机
太久没更了,抽空学习下。 看一道简单题。 class Solution:def maxProfit(self, prices: List[int]) -> int:cost -1profit 0for i in prices:if cost -1:cost icontinueprofit_ i - costif profit_ > profit:profit profit_if cost > i:cost iret…...
MySQL表的CURD
目录 一、Create 1.1单行数据全列插入 1.2多行数据指定列插入 1.3插入否则更新 1.4替换 2.Retrieve 2.1 select列 2.1.1全列查询 2.1.2指定列查询 2.1.3查询字段为表达式 2.1.4为查询结果指定别名 2.1.5结果去重 2.2where条件 2.3结果排序 2.4筛选分页结果 三…...
Java 如何覆盖第三方 jar 包中的类
目录 一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理 背景: 在我们日常的开发中,经常需要使用第三方的 jar 包,有时候我们会发现第三方的 jar 包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,…...
VSCode中使用EmmyLua插件对Unity的tolua断点调试
一.VSCode中搜索安装EmmyLua插件 二.创建和编辑launch.json文件 初始的launch.json是这样的 手动编辑加上一段内容如下图所示: 三.启动调试模式,并选择附加的进程...
【数据结构】_链表经典算法OJ(力扣/牛客第二弹)
目录 1. 题目1:返回倒数第k个节点 1.1 题目链接及描述 1.2 解题思路 1.3 程序 2. 题目2:链表的回文结构 2.1 题目链接及描述 2.2 解题思路 2.3 程序 1. 题目1:返回倒数第k个节点 1.1 题目链接及描述 题目链接: 面试题 …...
Spring Boot 2 快速教程:WebFlux优缺点及性能分析(四)
WebFlux优缺点 【来源DeepSeek】 Spring WebFlux 是 Spring 框架提供的响应式编程模型,旨在支持非阻塞、异步和高并发的应用场景。其优缺点如下: 优点 高并发与低资源消耗 非阻塞 I/O:基于事件循环模型(如 Netty)&am…...
自定义多功能输入对话框:基于 Qt 打造灵活交互界面
一、引言 在使用 Qt 进行应用程序开发时,我们经常需要与用户进行交互,获取他们输入的各种信息。QInputDialog 是 Qt 提供的一个便捷工具,可用于简单的输入场景,但当需求变得复杂,需要支持更多类型的输入控件࿰…...
基于springboot河南省旅游管理系统
基于Spring Boot的河南省旅游管理系统是一种专为河南省旅游行业设计的信息管理系统,旨在整合和管理河南省的旅游资源信息,为游客提供准确、全面的旅游攻略和服务。以下是对该系统的详细介绍: 一、系统背景与意义 河南省作为中国的中部省份&…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
