当前位置: 首页 > news >正文

OpenCV:特征检测总结

目录

一、什么是特征检测?

二、OpenCV 中的常见特征检测方法

1. Harris 角点检测

2. Shi-Tomasi 角点检测

3. Canny 边缘检测

4. SIFT(尺度不变特征变换)

5. ORB

三、特征检测的应用场景

1. 图像匹配

2. 运动检测

3. 自动驾驶

4. 生物特征识别

四、总结


一、什么是特征检测?

特征检测是计算机视觉中的重要技术,用于识别图像中的关键点(如角点、边缘、纹理等),帮助计算机理解和分析图像内容。特征检测的核心目标是找到能够 稳定、独特、可区分 的图像区域,以便在后续的目标识别、图像匹配、运动估计等任务中使用。

特征检测的基本类型:

  1. 角点检测:检测图像中的拐角点,例如 Harris 角点、Shi-Tomasi 角点。
  2. 边缘检测:检测图像中强度变化明显的边界,例如 Canny 边缘检测。
  3. 局部特征点检测:提取关键点及其描述符,例如 SIFT、SURF、ORB、FAST。

二、OpenCV 中的常见特征检测方法

OpenCV 提供了多种特征检测算法,可以根据应用场景选择适合的方法。

1. Harris 角点检测

Harris 角点检测是一种用于检测角点的方法。角点是指图像中灰度变化较大的点,它们通常对应于结构的交点,如建筑物的拐角。

核心思想:

  • 计算图像窗口在不同方向上的灰度变化。
  • 若在所有方向上灰度变化较大,则认为该点是角点。

示例代码:

import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 计算 Harris 角点
harris_corners = cv2.cornerHarris(gray, blockSize=2, ksize=3, k=0.04)# 角点增强
image[harris_corners > 0.01 * harris_corners.max()] = [0, 0, 255]# 显示结果
cv2.imshow('Harris Corners', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果:

 

应用场景:

  • 目标跟踪
  • 运动检测
  • 物体识别

2. Shi-Tomasi 角点检测

Shi-Tomasi 角点检测是 Harris 角点的改进版本,能够更好地选择稳定的角点。

import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 计算 Harris 角点
#harris_corners = cv2.cornerHarris(gray, blockSize=2, ksize=3, k=0.04)# 角点增强
#image[harris_corners > 0.01 * harris_corners.max()] = [0, 0, 255]corners = cv2.goodFeaturesToTrack(gray, maxCorners=100, qualityLevel=0.01, minDistance=10)
for corner in np.int0(corners):x, y = corner.ravel()cv2.circle(image, (x, y), 5, (0, 255, 0), -1)# 显示结果
cv2.imshow('Shi-Tomasi', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果:

应用场景:

  • 运动跟踪(如光流跟踪)
  • 结构分析

3. Canny 边缘检测

Canny 边缘检测 主要用于提取图像中的 边缘特征,是计算机视觉中的重要工具。

核心步骤:

  1. 高斯模糊去噪。
  2. 计算梯度,检测边缘。
  3. 通过非极大值抑制减少边缘宽度。
  4. 通过双阈值去除弱边缘。

示例代码:

import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)edges = cv2.Canny(gray, 100, 200)
cv2.imshow('Edges', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果: 

 

应用场景:

  • 车道检测
  • 物体轮廓提取
  • OCR(光学字符识别)

4. SIFT(尺度不变特征变换)

SIFT (Scale-Invariant Feature Transform) 是一种经典的特征检测方法,具有 尺度不变性 和 旋转不变性,能够检测图像中的局部特征点,并为每个特征点生成独特的描述符。

示例代码:

import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)sift = cv2.SIFT_create()
keypoints, descriptors = sift.detectAndCompute(gray, None)
image_sift = cv2.drawKeypoints(image, keypoints, None)
cv2.imshow('SIFT Features', image_sift)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果:  

 

应用场景:

  • 图像匹配(如拼接全景图)
  • 物体识别
  • 机器人导航

5. ORB

ORB (Oriented FAST and Rotated BRIEF)是 SIFT 和 SURF 的高效替代方案,适用于实时应用,如移动设备上的特征检测。

示例代码:

import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)orb = cv2.ORB_create()
keypoints = orb.detect(gray, None)
image_orb = cv2.drawKeypoints(image, keypoints, None)
cv2.imshow('ORB Features', image_orb)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果: 

 

应用场景:

  • 低计算资源环境(如嵌入式设备)
  • 物体跟踪
  • 视觉 SLAM(同时定位与地图构建)

三、特征检测的应用场景

1. 图像匹配

  • 通过特征点匹配来识别物体,如 SIFT、ORB 可用于 拼接全景图 或 目标识别。

2. 运动检测

  • 角点检测(如 Shi-Tomasi)可用于跟踪视频中的运动物体,如 光流跟踪。

3. 自动驾驶

  • Canny 边缘检测 可用于 车道检测,ORB 可用于 视觉 SLAM。

4. 生物特征识别

  • SIFT、ORB 可用于 指纹识别、人脸识别。

四、总结

方法主要用途特点
Harris 角点角点检测计算简单,适用于运动检测
Shi-Tomasi 角点改进的角点检测适用于光流跟踪等任务
Canny 边缘边缘检测精确提取物体轮廓
SIFT关键点检测、图像匹配尺度、旋转不变,精度高
ORB关键点检测、实时匹配适合移动端,速度快

如何选择特征检测方法?

  • 如果需要快速检测角点:Shi-Tomasi、Harris。
  • 如果需要检测物体轮廓:Canny。
  • 如果需要进行图像匹配:SIFT、ORB。
  • 如果需要在低计算资源环境下运行:ORB 是更好的选择。

😀通过OpenCV提供的特征检测工具,我们可以在图像处理、目标识别、运动检测等多个领域实现高效的视觉分析。希望本篇博文能有所帮助!

相关文章:

OpenCV:特征检测总结

目录 一、什么是特征检测? 二、OpenCV 中的常见特征检测方法 1. Harris 角点检测 2. Shi-Tomasi 角点检测 3. Canny 边缘检测 4. SIFT(尺度不变特征变换) 5. ORB 三、特征检测的应用场景 1. 图像匹配 2. 运动检测 3. 自动驾驶 4.…...

Clion开发STM32时使用stlink下载程序与Debug调试

一、下载程序 先创建一个文件夹: 命名:stlink.cfg 写入以下代码: # choose st-link/j-link/dap-link etc. #adapter driver cmsis-dap #transport select swdsource [find interface/stlink.cfg]transport select hla_swdsource [find target/stm32f4x.…...

电脑开机键一闪一闪打不开

家人们谁懂啊!本来打算愉快地开启游戏时光,或者高效处理工作任务,结果按下电脑开机键后,它就只是一闪一闪的,怎么都打不开。相信不少朋友都遭遇过这种令人崩溃的场景,满心的期待瞬间化为焦急与无奈。电脑在…...

深度学习 Pytorch 基础网络手动搭建与快速实现

为了方便后续练习的展开,我们尝试自己创建一个数据生成器,用于自主生成一些符合某些条件、具备某些特性的数据集。 导入相关的包 # 随机模块 import random# 绘图模块 import matplotlib as mpl import matplotlib.pyplot as plt# 导入numpy import nu…...

Sqli-labs靶场实录(一):Basic Challenges

sqli-labs靶场实录:Basic Challenges sql手注基本流程Less-11.1探测注入点1.2判断字段数1.3判断回显位1.4提取数据库基本信息1.5拖取敏感数据 Less-2Less-3Less-4Less5爆表爆列名 Less6爆库爆表爆列名 Less7猜解数据库长度逐字符爆破数据库名 Less8爆库 Less9爆库 Less10Less11…...

2024最新版Node.js详细安装教程(含npm配置淘宝最新镜像地址)

一:Node.js安装 浏览器中搜索Nodejs,或直接用网址:Node.js — 在任何地方运行 JavaScript 建议此处下载长期支持版本(红框内): 开始下载,完成后打开文件: 进入安装界面,在此处勾选,再点击n…...

RK3568使用QT搭建TCP服务器和客户端

文章目录 一、让RK3568开发板先连接上wifi二、客户端代码1. `widget.h` 文件2. `widget.cpp` 文件**详细讲解**1. **`Widget` 类构造函数 (`Widget::Widget`)**2. **UI 布局 (`setupUI`)**3. **连接按钮的槽函数 (`onConnectClicked`)**4. **发送消息按钮的槽函数 (`onSendMess…...

Android学习20 -- 手搓App2(Gradle)

1 前言 昨天写了一个完全手搓的:Android学习19 -- 手搓App-CSDN博客 后面谷歌说不要用aapt,d8这些来搞。其实不想弄Gradle的,不过想着既然开始了,就多看一些。之前写过一篇Gradle,不过是最简单的编译,不涉…...

LeetCode - Google 大模型10题 第2天 Position Embedding(位置编码) 3题

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/145454489 在 Transformer 架构中,位置编码(Position Embedding) 是辅助模型理解序列中元素顺序的关键机制。绝对位置编码(Absolute P…...

PostgreSQL 数据库备份与还原

为了安全与数据共享等,创建好的数据库有时候需要备份操作和还原操作。数据库的备份与还原主要是三个命令:pg_dump、pg_dumpall 和 pg_restore 。 其中pg_dump用于备份单个数据库,它支持多种备份格式(SQL、自定义等)&a…...

proxmox通过更多的方式创建虚拟机

概述 作为一名资深运维工程师,我们经常需要在 Proxmox 虚拟化平台上创建和管理虚拟机。本文将介绍三种不同的方式在 Proxmox 上创建 Ubuntu 虚拟机: 通过 Proxmox 命令创建虚拟机通过 Shell 脚本自动化创建虚拟机使用 Proxmox API 创建虚拟机 每种方式…...

WordPress使用(2)

上一篇文章讲述了WordPress的基本安装,主要是docker方式的处理。本文章主要介绍WordPress安装后的其他设置。 1. 安装后设置 安装后碰到的第一个需求就是安装一个合适的主题,但WordPress默认的上传文件大小是2M,远远无法满足要求&#xff0…...

git中文件的状态状态切换

文件的状态分类 Git 中文件的状态主要分为以下几种: Untracked(未跟踪) 定义:这些文件从未被 Git 跟踪过,通常是因为它们是新创建的文件,或者被 .gitignore 排除在外。 示例:新创建的文件 new…...

解决php8.3无法加载curl扩展

把它的值更改为扩展存在的目录的绝对路径(扩展存在的目录为有php_xxx.dll存在的目录) extension_dir "e:\serv\php83\ext" 然后从php根目录复制 libssh2.dll 和 libcrypto-*.dll 和 libssl-*.dll 到Apache根目录下的bin目录 重启apache服务即可...

三路排序算法

三路排序算法 引言 排序算法是计算机科学中基础且重要的算法之一。在数据分析和处理中,排序算法的效率直接影响着程序的执行速度和系统的稳定性。本文将深入探讨三路排序算法,包括其原理、实现和应用场景。 一、三路排序算法的原理 三路排序算法是一…...

入行FPGA设计工程师需要提前学习哪些内容?

FPGA作为一种灵活可编程的硬件平台,广泛应用于嵌入式系统、通信、数据处理等领域。很多人选择转行FPGA设计工程师,但对于新手来说,可能在学习过程中会遇到一些迷茫和困惑。为了帮助大家更好地准备,本文将详细介绍入行FPGA设计工程…...

DBASE DBF数据库文件解析

基于Java实现DBase DBF文件的解析和显示 JDK19编译运行,实现了数据库字段和数据解析显示。 首先解析数据库文件头代码 byte bytes[] Files.readAllBytes(Paths.get(file));BinaryBufferArray bis new BinaryBufferArray(bytes);DBF dbf new DBF();dbf.VersionN…...

html基本结构和常见元素

html5文档基本结构 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><title>文档标题</title> </head> <body>文档正文部分 </body> </html> html文档可分为文档头和文档体…...

JAVAweb学习日记(十) Mybatis入门操作

一、介绍 二、快速入门程序 三、入门-数据库连接池 四、入门-lombok工具包...

从Transformer到世界模型:AGI核心架构演进

文章目录 引言&#xff1a;架构革命推动AGI进化一、Transformer&#xff1a;重新定义序列建模1.1 注意力机制的革命性突破1.2 从NLP到跨模态演进1.3 规模扩展的黄金定律 二、通向世界模型的关键跃迁2.1 从语言模型到认知架构2.2 世界模型的核心特征2.3 混合架构的突破 三、构建…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

安卓基础(Java 和 Gradle 版本)

1. 设置项目的 JDK 版本 方法1&#xff1a;通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分&#xff0c;设置 Gradle JDK 方法2&#xff1a;通过 Settings File → Settings... (或 CtrlAltS)…...

Kafka主题运维全指南:从基础配置到故障处理

#作者&#xff1a;张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1&#xff1a;主题删除失败。常见错误2&#xff1a;__consumer_offsets占用太多的磁盘。 主题日常管理 …...

​​企业大模型服务合规指南:深度解析备案与登记制度​​

伴随AI技术的爆炸式发展&#xff0c;尤其是大模型&#xff08;LLM&#xff09;在各行各业的深度应用和整合&#xff0c;企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者&#xff0c;还是积极拥抱AI转型的传统企业&#xff0c;在面向公众…...

数据结构:泰勒展开式:霍纳法则(Horner‘s Rule)

目录 &#x1f50d; 若用递归计算每一项&#xff0c;会发生什么&#xff1f; Horners Rule&#xff08;霍纳法则&#xff09; 第一步&#xff1a;我们从最原始的泰勒公式出发 第二步&#xff1a;从形式上重新观察展开式 &#x1f31f; 第三步&#xff1a;引出霍纳法则&…...