当前位置: 首页 > news >正文

OpenCV:特征检测总结

目录

一、什么是特征检测?

二、OpenCV 中的常见特征检测方法

1. Harris 角点检测

2. Shi-Tomasi 角点检测

3. Canny 边缘检测

4. SIFT(尺度不变特征变换)

5. ORB

三、特征检测的应用场景

1. 图像匹配

2. 运动检测

3. 自动驾驶

4. 生物特征识别

四、总结


一、什么是特征检测?

特征检测是计算机视觉中的重要技术,用于识别图像中的关键点(如角点、边缘、纹理等),帮助计算机理解和分析图像内容。特征检测的核心目标是找到能够 稳定、独特、可区分 的图像区域,以便在后续的目标识别、图像匹配、运动估计等任务中使用。

特征检测的基本类型:

  1. 角点检测:检测图像中的拐角点,例如 Harris 角点、Shi-Tomasi 角点。
  2. 边缘检测:检测图像中强度变化明显的边界,例如 Canny 边缘检测。
  3. 局部特征点检测:提取关键点及其描述符,例如 SIFT、SURF、ORB、FAST。

二、OpenCV 中的常见特征检测方法

OpenCV 提供了多种特征检测算法,可以根据应用场景选择适合的方法。

1. Harris 角点检测

Harris 角点检测是一种用于检测角点的方法。角点是指图像中灰度变化较大的点,它们通常对应于结构的交点,如建筑物的拐角。

核心思想:

  • 计算图像窗口在不同方向上的灰度变化。
  • 若在所有方向上灰度变化较大,则认为该点是角点。

示例代码:

import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 计算 Harris 角点
harris_corners = cv2.cornerHarris(gray, blockSize=2, ksize=3, k=0.04)# 角点增强
image[harris_corners > 0.01 * harris_corners.max()] = [0, 0, 255]# 显示结果
cv2.imshow('Harris Corners', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果:

 

应用场景:

  • 目标跟踪
  • 运动检测
  • 物体识别

2. Shi-Tomasi 角点检测

Shi-Tomasi 角点检测是 Harris 角点的改进版本,能够更好地选择稳定的角点。

import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)# 计算 Harris 角点
#harris_corners = cv2.cornerHarris(gray, blockSize=2, ksize=3, k=0.04)# 角点增强
#image[harris_corners > 0.01 * harris_corners.max()] = [0, 0, 255]corners = cv2.goodFeaturesToTrack(gray, maxCorners=100, qualityLevel=0.01, minDistance=10)
for corner in np.int0(corners):x, y = corner.ravel()cv2.circle(image, (x, y), 5, (0, 255, 0), -1)# 显示结果
cv2.imshow('Shi-Tomasi', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果:

应用场景:

  • 运动跟踪(如光流跟踪)
  • 结构分析

3. Canny 边缘检测

Canny 边缘检测 主要用于提取图像中的 边缘特征,是计算机视觉中的重要工具。

核心步骤:

  1. 高斯模糊去噪。
  2. 计算梯度,检测边缘。
  3. 通过非极大值抑制减少边缘宽度。
  4. 通过双阈值去除弱边缘。

示例代码:

import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)edges = cv2.Canny(gray, 100, 200)
cv2.imshow('Edges', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果: 

 

应用场景:

  • 车道检测
  • 物体轮廓提取
  • OCR(光学字符识别)

4. SIFT(尺度不变特征变换)

SIFT (Scale-Invariant Feature Transform) 是一种经典的特征检测方法,具有 尺度不变性 和 旋转不变性,能够检测图像中的局部特征点,并为每个特征点生成独特的描述符。

示例代码:

import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)sift = cv2.SIFT_create()
keypoints, descriptors = sift.detectAndCompute(gray, None)
image_sift = cv2.drawKeypoints(image, keypoints, None)
cv2.imshow('SIFT Features', image_sift)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果:  

 

应用场景:

  • 图像匹配(如拼接全景图)
  • 物体识别
  • 机器人导航

5. ORB

ORB (Oriented FAST and Rotated BRIEF)是 SIFT 和 SURF 的高效替代方案,适用于实时应用,如移动设备上的特征检测。

示例代码:

import cv2
import numpy as np# 读取图像并转换为灰度图
image = cv2.imread('D:\\resource\\filter\\shudu.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)orb = cv2.ORB_create()
keypoints = orb.detect(gray, None)
image_orb = cv2.drawKeypoints(image, keypoints, None)
cv2.imshow('ORB Features', image_orb)
cv2.waitKey(0)
cv2.destroyAllWindows()

▶️运行结果: 

 

应用场景:

  • 低计算资源环境(如嵌入式设备)
  • 物体跟踪
  • 视觉 SLAM(同时定位与地图构建)

三、特征检测的应用场景

1. 图像匹配

  • 通过特征点匹配来识别物体,如 SIFT、ORB 可用于 拼接全景图 或 目标识别。

2. 运动检测

  • 角点检测(如 Shi-Tomasi)可用于跟踪视频中的运动物体,如 光流跟踪。

3. 自动驾驶

  • Canny 边缘检测 可用于 车道检测,ORB 可用于 视觉 SLAM。

4. 生物特征识别

  • SIFT、ORB 可用于 指纹识别、人脸识别。

四、总结

方法主要用途特点
Harris 角点角点检测计算简单,适用于运动检测
Shi-Tomasi 角点改进的角点检测适用于光流跟踪等任务
Canny 边缘边缘检测精确提取物体轮廓
SIFT关键点检测、图像匹配尺度、旋转不变,精度高
ORB关键点检测、实时匹配适合移动端,速度快

如何选择特征检测方法?

  • 如果需要快速检测角点:Shi-Tomasi、Harris。
  • 如果需要检测物体轮廓:Canny。
  • 如果需要进行图像匹配:SIFT、ORB。
  • 如果需要在低计算资源环境下运行:ORB 是更好的选择。

😀通过OpenCV提供的特征检测工具,我们可以在图像处理、目标识别、运动检测等多个领域实现高效的视觉分析。希望本篇博文能有所帮助!

相关文章:

OpenCV:特征检测总结

目录 一、什么是特征检测? 二、OpenCV 中的常见特征检测方法 1. Harris 角点检测 2. Shi-Tomasi 角点检测 3. Canny 边缘检测 4. SIFT(尺度不变特征变换) 5. ORB 三、特征检测的应用场景 1. 图像匹配 2. 运动检测 3. 自动驾驶 4.…...

Clion开发STM32时使用stlink下载程序与Debug调试

一、下载程序 先创建一个文件夹: 命名:stlink.cfg 写入以下代码: # choose st-link/j-link/dap-link etc. #adapter driver cmsis-dap #transport select swdsource [find interface/stlink.cfg]transport select hla_swdsource [find target/stm32f4x.…...

电脑开机键一闪一闪打不开

家人们谁懂啊!本来打算愉快地开启游戏时光,或者高效处理工作任务,结果按下电脑开机键后,它就只是一闪一闪的,怎么都打不开。相信不少朋友都遭遇过这种令人崩溃的场景,满心的期待瞬间化为焦急与无奈。电脑在…...

深度学习 Pytorch 基础网络手动搭建与快速实现

为了方便后续练习的展开,我们尝试自己创建一个数据生成器,用于自主生成一些符合某些条件、具备某些特性的数据集。 导入相关的包 # 随机模块 import random# 绘图模块 import matplotlib as mpl import matplotlib.pyplot as plt# 导入numpy import nu…...

Sqli-labs靶场实录(一):Basic Challenges

sqli-labs靶场实录:Basic Challenges sql手注基本流程Less-11.1探测注入点1.2判断字段数1.3判断回显位1.4提取数据库基本信息1.5拖取敏感数据 Less-2Less-3Less-4Less5爆表爆列名 Less6爆库爆表爆列名 Less7猜解数据库长度逐字符爆破数据库名 Less8爆库 Less9爆库 Less10Less11…...

2024最新版Node.js详细安装教程(含npm配置淘宝最新镜像地址)

一:Node.js安装 浏览器中搜索Nodejs,或直接用网址:Node.js — 在任何地方运行 JavaScript 建议此处下载长期支持版本(红框内): 开始下载,完成后打开文件: 进入安装界面,在此处勾选,再点击n…...

RK3568使用QT搭建TCP服务器和客户端

文章目录 一、让RK3568开发板先连接上wifi二、客户端代码1. `widget.h` 文件2. `widget.cpp` 文件**详细讲解**1. **`Widget` 类构造函数 (`Widget::Widget`)**2. **UI 布局 (`setupUI`)**3. **连接按钮的槽函数 (`onConnectClicked`)**4. **发送消息按钮的槽函数 (`onSendMess…...

Android学习20 -- 手搓App2(Gradle)

1 前言 昨天写了一个完全手搓的:Android学习19 -- 手搓App-CSDN博客 后面谷歌说不要用aapt,d8这些来搞。其实不想弄Gradle的,不过想着既然开始了,就多看一些。之前写过一篇Gradle,不过是最简单的编译,不涉…...

LeetCode - Google 大模型10题 第2天 Position Embedding(位置编码) 3题

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/145454489 在 Transformer 架构中,位置编码(Position Embedding) 是辅助模型理解序列中元素顺序的关键机制。绝对位置编码(Absolute P…...

PostgreSQL 数据库备份与还原

为了安全与数据共享等,创建好的数据库有时候需要备份操作和还原操作。数据库的备份与还原主要是三个命令:pg_dump、pg_dumpall 和 pg_restore 。 其中pg_dump用于备份单个数据库,它支持多种备份格式(SQL、自定义等)&a…...

proxmox通过更多的方式创建虚拟机

概述 作为一名资深运维工程师,我们经常需要在 Proxmox 虚拟化平台上创建和管理虚拟机。本文将介绍三种不同的方式在 Proxmox 上创建 Ubuntu 虚拟机: 通过 Proxmox 命令创建虚拟机通过 Shell 脚本自动化创建虚拟机使用 Proxmox API 创建虚拟机 每种方式…...

WordPress使用(2)

上一篇文章讲述了WordPress的基本安装,主要是docker方式的处理。本文章主要介绍WordPress安装后的其他设置。 1. 安装后设置 安装后碰到的第一个需求就是安装一个合适的主题,但WordPress默认的上传文件大小是2M,远远无法满足要求&#xff0…...

git中文件的状态状态切换

文件的状态分类 Git 中文件的状态主要分为以下几种: Untracked(未跟踪) 定义:这些文件从未被 Git 跟踪过,通常是因为它们是新创建的文件,或者被 .gitignore 排除在外。 示例:新创建的文件 new…...

解决php8.3无法加载curl扩展

把它的值更改为扩展存在的目录的绝对路径(扩展存在的目录为有php_xxx.dll存在的目录) extension_dir "e:\serv\php83\ext" 然后从php根目录复制 libssh2.dll 和 libcrypto-*.dll 和 libssl-*.dll 到Apache根目录下的bin目录 重启apache服务即可...

三路排序算法

三路排序算法 引言 排序算法是计算机科学中基础且重要的算法之一。在数据分析和处理中,排序算法的效率直接影响着程序的执行速度和系统的稳定性。本文将深入探讨三路排序算法,包括其原理、实现和应用场景。 一、三路排序算法的原理 三路排序算法是一…...

入行FPGA设计工程师需要提前学习哪些内容?

FPGA作为一种灵活可编程的硬件平台,广泛应用于嵌入式系统、通信、数据处理等领域。很多人选择转行FPGA设计工程师,但对于新手来说,可能在学习过程中会遇到一些迷茫和困惑。为了帮助大家更好地准备,本文将详细介绍入行FPGA设计工程…...

DBASE DBF数据库文件解析

基于Java实现DBase DBF文件的解析和显示 JDK19编译运行,实现了数据库字段和数据解析显示。 首先解析数据库文件头代码 byte bytes[] Files.readAllBytes(Paths.get(file));BinaryBufferArray bis new BinaryBufferArray(bytes);DBF dbf new DBF();dbf.VersionN…...

html基本结构和常见元素

html5文档基本结构 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><title>文档标题</title> </head> <body>文档正文部分 </body> </html> html文档可分为文档头和文档体…...

JAVAweb学习日记(十) Mybatis入门操作

一、介绍 二、快速入门程序 三、入门-数据库连接池 四、入门-lombok工具包...

从Transformer到世界模型:AGI核心架构演进

文章目录 引言&#xff1a;架构革命推动AGI进化一、Transformer&#xff1a;重新定义序列建模1.1 注意力机制的革命性突破1.2 从NLP到跨模态演进1.3 规模扩展的黄金定律 二、通向世界模型的关键跃迁2.1 从语言模型到认知架构2.2 世界模型的核心特征2.3 混合架构的突破 三、构建…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

Keil 中设置 STM32 Flash 和 RAM 地址详解

文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode&#xff1a; 2.利用 authorizationCode 获取 accessToken&#xff1a;文档中心 3.获取手机&#xff1a;文档中心 4.获取昵称头像&#xff1a;文档中心 首先创建 request 若要获取手机号&#xff0c;scope必填 phone&#xff0c;permissions 必填 …...