本地部署 DeepSeek-R1:简单易上手,AI 随时可用!
🎯 先看看本地部署的运行效果
为了测试本地部署的 DeepSeek-R1 是否真的够强,我们随便问了一道经典的“鸡兔同笼”问题,考察它的推理能力。
📌 问题示例:
笼子里有鸡和兔,总共有 35 只头,94 只脚,问笼中各有几只鸡和兔?
🔹 AI 的推理过程
DeepSeek-R1 详细推导了方程,并一步步计算出答案,展现了清晰的思考逻辑。
📸

🔹 AI 的最终答案
思考后,AI 准确给出了最终答案,推理严谨,逻辑缜密。
📸

可以看到,本地运行的 DeepSeek-R1 推理能力极强,完全不输在线 AI!🔥
🛠️ 3 步完成本地部署,轻松上手!
🔹 第 1 步:下载 LM Studio(本地 AI 交互软件)
LM Studio 是一个美观、易用的本地 AI 运行环境,比 Ollama 更加友好。
🔗 官方下载地址:https://lmstudio.ai/
💡 如果官网下载受限,可使用我提供的百度云链接(请私信获取)。
📸

🔹 第 2 步:下载 DeepSeek-R1 模型(AI 的“大脑”)
DeepSeek-R1 需要以 GGUF 格式 运行,因此我们从 ModelScope 下载官方优化的模型文件。
🔗 模型下载地址:
https://modelscope.cn/models/lmstudio-community
📌 如何选择合适的模型?
我使用的显卡是 RTX 4070Ti Super(16GB 显存),选择的是 14B 模型。你可以根据自己的显存选择更大或更小的模型版本,以保证流畅运行。
📸

📌 下载方法(使用 Git 命令行):
-
1. 安装 Git(Git 官网)
-
2. 打开 CMD 终端,输入以下命令下载模型文件:
git clone https://modelscope.cn/models/lmstudio-community/DeepSeek-R1-Distill-Qwen-14B-GGUF.git
-
3. 等待下载完成(文件较大,建议保持网络稳定)。
📸

🔹 第 3 步:在 LM Studio 加载模型,开启 AI 对话!
-
1. 打开 LM Studio,找到加载模型的选项(如下图红框所示)。
-
2. 选择刚刚下载的 DeepSeek-R1 GGUF 文件,并加载进软件。
-
3. 点击下方“聊天框”,开始聊天!🎉
📸

📌 个性化设置:
-
• 温度(Temperature):控制 AI 的创造性
-
• 最大输出长度(Max Tokens):控制回答的字数
-
• 响应速度优化
📸

🎯 体验总结:本地 AI 的真正魅力!
✨ 无需联网,随时随地运行 AI
✨ 隐私安全,不上传数据到云端
✨ 推理能力强,媲美 ChatGPT
✨ 完全免费,不用订阅 API
📢 你成功部署了吗?欢迎在评论区分享你的使用体验🔥
相关文章:
本地部署 DeepSeek-R1:简单易上手,AI 随时可用!
🎯 先看看本地部署的运行效果 为了测试本地部署的 DeepSeek-R1 是否真的够强,我们随便问了一道经典的“鸡兔同笼”问题,考察它的推理能力。 📌 问题示例: 笼子里有鸡和兔,总共有 35 只头,94 只…...
请求响应(接上篇)
请求 日期参数 需要在前面加上一个注解DateTimeFormat来接收传入的参数的值 Json参数 JSON参数:JSON数据键名与形参对象属性名相同,定义POJO类型形参即可接收参数,需要使用 RequestBody 标识 通过RequestBody将JSON格式的数据封装到实体类…...
数组排序算法
数组排序算法 用C语言实现的数组排序算法。 排序算法平均时间复杂度最坏时间复杂度最好时间复杂度空间复杂度是否稳定适用场景QuickO(n log n)O(n)O(n log n)O(log n)不稳定大规模数据,通用排序BubbleO(n)O(n)O(n)O(1)稳定小规模数据,教学用途InsertO(n)…...
防火墙的安全策略
1.VLAN 2属于办公区;VLAN 3属于生产区,创建时间段 [FW]ip address-set BG type object [FW-object-address-set-BG]address 192.168.1.0 mask 25 [FW]ip address-set SC type object [FW-object-address-set-SC]address 192.168.1.129 mask 25 [FW]ip address-se…...
2025Java面试题超详细整理《微服务篇》
什么是微服务架构? 微服务框架是将某个应用程序开发划分为许多独立小型服务,实现敏捷开发和部署,这些服务一般围绕业务规则进行构建,可以用不同的语言开发,使用不同的数据存储,最终使得每个服务运行在自己…...
中位数定理:小试牛刀> _ <2025牛客寒假1
给定数轴上的n个点,找出一个到它们的距离之和尽量小的点(即使我们可以选择不是这些点里的点,我们还是选择中位数的那个点最优) 结论:这些点的中位数就是目标点。可以自己枚举推导(很好想) (对于 点的数量为…...
(2025,LLM,下一 token 预测,扩散微调,L2D,推理增强,可扩展计算)从大语言模型到扩散微调
Large Language Models to Diffusion Finetuning 目录 1. 概述 2. 研究背景 3. 方法 3.1 用于 LM 微调的高斯扩散 3.2 架构 4. 主要实验结果 5. 结论 1. 概述 本文提出了一种新的微调方法——LM to Diffusion (L2D),旨在赋予预训练的大语言模型(…...
如何开发一个大语言模型,开发流程及需要的专业知识
开发大型语言模型(LLM)是一个复杂且资源密集的过程,涉及多个阶段和跨学科知识。以下是详细的开发流程和所需专业知识指南: 一、开发流程 1. 需求分析与规划 目标定义:明确模型用途(如对话、翻译、代码生成…...
【数据采集】基于Selenium采集豆瓣电影Top250的详细数据
基于Selenium采集豆瓣电影Top250的详细数据 Selenium官网:https://www.selenium.dev/blog/ 豆瓣电影Top250官网:https://movie.douban.com/top250 写在前面 实验目标:基于Selenium框架采集豆瓣电影Top250的详细数据。 电脑系统:Windows 使用软件:PyCharm、Navicat 技术需求…...
neo4j-在Linux中安装neo4j
目录 切换jdk 安装neo4j 配置neo4j以便其他电脑可以访问 切换jdk 因为我安装的jdk是1.8版本的,而我安装的neo4j版本为5.15,Neo4j Community 5.15.0 不支持 Java 1.8,它要求 Java 17 或更高版本。 所以我需要升级Java到17 安装 OpenJDK 17 sudo yu…...
多无人机--强化学习
这个是我对于我的大创项目的构思,随着时间逐渐更新 项目概要 我们的项目平台来自挑战杯揭绑挂帅的无人机对抗项目,但是在由于时间原因,并未考虑强化学习,所以现在通过大创项目来弥补遗憾 我们项目分为三部分,分为虚…...
UE制作2d游戏
2d免费资产: Free 2D Game Assets - CraftPix.net 需要用到PaperZD插件 官网下载后启用即可 导入png素材 然后全选 - 创建Sprite 创建 人物基类 设置弹簧臂和相机 弹簧臂设置成旋转-90 , 取消碰撞测试 设置子类Sprite 拖到场景中 绑定设置输入映射,让角色移动跳跃 神似卡拉比…...
说一下JVM管理的常见参数
Java虚拟机(JVM)有许多常见参数,用于控制其行为和性能。以下是一些常见的JVM参数及其说明: 1. 内存管理参数 -Xms<size> START 设置初始堆内存大小。例如,-Xms512m表示初始堆大小为512MB。 -Xmx<size>…...
【FPGA】 MIPS 12条整数指令【2】
目录 仿真 代码 完整代码 实现slt 仿真 ori r1,r0,1100h ori r2,r0,0020h ori r3,r0,ff00h ori r4,r0,ffffh addi r5,r0,ffff slt r6,r5,r4 slt r6,r4,r3 代码 EX Slt:regcData ($signed(regaData)<$signed(regbData))?1b1:1b0; ID Inst_slt:be…...
机器学习--python基础库之Matplotlib (2) 简单易懂!!!
python基础库之Matplotlib(2) python基础库之Matplotlib0 准备1 散点图的绘制2 柱状图绘制3 其他 python基础库之Matplotlib 上篇文章机器学习–python基础库之Matplotlib (1) 超级详细!!!主要讲解了python的基础库matplotlib中绘图的流程以及折线图的…...
mybatis plus 持久化使用技巧及场景
mybatis plus提供了很多强大的持久化工具,新手容易对这些工具使用困难,下面我总结了一下mybatis plus持久化的使用技巧及使用场景。 一、持久化 官方文档:https://baomidou.com/guides/data-interface/ (一)通过ser…...
JVM监控和管理工具
基础故障处理工具 jps jps(JVM Process Status Tool):Java虚拟机进程状态工具 功能 1:列出正在运行的虚拟机进程 2:显示虚拟机执行主类(main()方法所在的类) 3:显示进程ID(PID,Process Identifier) 命令格式 jps […...
记录 | 基于MaxKB的文字生成视频
目录 前言一、安装SDK二、创建视频函数库三、调试更新时间 前言 参考文章:如何利用智谱全模态免费模型,生成大家都喜欢的图、文、视并茂的文章! 自己的感想 本文记录了创建文字生成视频的函数库的过程。如果想复现本文,需要你逐一…...
生成式AI安全最佳实践 - 抵御OWASP Top 10攻击 (下)
今天小李哥将开启全新的技术分享系列,为大家介绍生成式AI的安全解决方案设计方法和最佳实践。近年来生成式 AI 安全市场正迅速发展。据IDC预测,到2025年全球 AI 安全解决方案市场规模将突破200亿美元,年复合增长率超过30%,而Gartn…...
现场流不稳定,EasyCVR视频融合平台如何解决RTSP拉流不能播放的问题?
视频汇聚EasyCVR安防监控视频系统采用先进的网络传输技术,支持高清视频的接入和传输,能够满足大规模、高并发的远程监控需求。平台灵活性强,支持国标GB/T 28181协议、部标JT808、GA/T 1400协议、RTMP、RTSP/Onvif协议、海康Ehome、海康SDK、大…...
shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...
HTML前端开发:JavaScript 常用事件详解
作为前端开发的核心,JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例: 1. onclick - 点击事件 当元素被单击时触发(左键点击) button.onclick function() {alert("按钮被点击了!&…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
GitFlow 工作模式(详解)
今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...
NPOI操作EXCEL文件 ——CAD C# 二次开发
缺点:dll.版本容易加载错误。CAD加载插件时,没有加载所有类库。插件运行过程中用到某个类库,会从CAD的安装目录找,找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库,就用插件程序加载进…...
离线语音识别方案分析
随着人工智能技术的不断发展,语音识别技术也得到了广泛的应用,从智能家居到车载系统,语音识别正在改变我们与设备的交互方式。尤其是离线语音识别,由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力,广…...
云安全与网络安全:核心区别与协同作用解析
在数字化转型的浪潮中,云安全与网络安全作为信息安全的两大支柱,常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异,并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全:聚焦于保…...
Java中栈的多种实现类详解
Java中栈的多种实现类详解:Stack、LinkedList与ArrayDeque全方位对比 前言一、Stack类——Java最早的栈实现1.1 Stack类简介1.2 常用方法1.3 优缺点分析 二、LinkedList类——灵活的双端链表2.1 LinkedList类简介2.2 常用方法2.3 优缺点分析 三、ArrayDeque类——高…...
Ray框架:分布式AI训练与调参实践
Ray框架:分布式AI训练与调参实践 系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu 文章目录 Ray框架:分布式AI训练与调参实践摘要引言框架架构解析1. 核心组件设计2. 关键技术实现2.1 动态资源调度2.2 …...
2025 后端自学UNIAPP【项目实战:旅游项目】7、景点详情页面【完结】
1、获取景点详情的请求【my_api.js】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http(/login/getWXSessionKey, {code,avatar}); };//…...
