本地部署 DeepSeek-R1:简单易上手,AI 随时可用!
🎯 先看看本地部署的运行效果
为了测试本地部署的 DeepSeek-R1 是否真的够强,我们随便问了一道经典的“鸡兔同笼”问题,考察它的推理能力。
📌 问题示例:
笼子里有鸡和兔,总共有 35 只头,94 只脚,问笼中各有几只鸡和兔?
🔹 AI 的推理过程
DeepSeek-R1 详细推导了方程,并一步步计算出答案,展现了清晰的思考逻辑。
📸

🔹 AI 的最终答案
思考后,AI 准确给出了最终答案,推理严谨,逻辑缜密。
📸

可以看到,本地运行的 DeepSeek-R1 推理能力极强,完全不输在线 AI!🔥
🛠️ 3 步完成本地部署,轻松上手!
🔹 第 1 步:下载 LM Studio(本地 AI 交互软件)
LM Studio 是一个美观、易用的本地 AI 运行环境,比 Ollama 更加友好。
🔗 官方下载地址:https://lmstudio.ai/
💡 如果官网下载受限,可使用我提供的百度云链接(请私信获取)。
📸

🔹 第 2 步:下载 DeepSeek-R1 模型(AI 的“大脑”)
DeepSeek-R1 需要以 GGUF 格式 运行,因此我们从 ModelScope 下载官方优化的模型文件。
🔗 模型下载地址:
https://modelscope.cn/models/lmstudio-community
📌 如何选择合适的模型?
我使用的显卡是 RTX 4070Ti Super(16GB 显存),选择的是 14B 模型。你可以根据自己的显存选择更大或更小的模型版本,以保证流畅运行。
📸

📌 下载方法(使用 Git 命令行):
-
1. 安装 Git(Git 官网)
-
2. 打开 CMD 终端,输入以下命令下载模型文件:
git clone https://modelscope.cn/models/lmstudio-community/DeepSeek-R1-Distill-Qwen-14B-GGUF.git
-
3. 等待下载完成(文件较大,建议保持网络稳定)。
📸

🔹 第 3 步:在 LM Studio 加载模型,开启 AI 对话!
-
1. 打开 LM Studio,找到加载模型的选项(如下图红框所示)。
-
2. 选择刚刚下载的 DeepSeek-R1 GGUF 文件,并加载进软件。
-
3. 点击下方“聊天框”,开始聊天!🎉
📸

📌 个性化设置:
-
• 温度(Temperature):控制 AI 的创造性
-
• 最大输出长度(Max Tokens):控制回答的字数
-
• 响应速度优化
📸

🎯 体验总结:本地 AI 的真正魅力!
✨ 无需联网,随时随地运行 AI
✨ 隐私安全,不上传数据到云端
✨ 推理能力强,媲美 ChatGPT
✨ 完全免费,不用订阅 API
📢 你成功部署了吗?欢迎在评论区分享你的使用体验🔥
相关文章:
本地部署 DeepSeek-R1:简单易上手,AI 随时可用!
🎯 先看看本地部署的运行效果 为了测试本地部署的 DeepSeek-R1 是否真的够强,我们随便问了一道经典的“鸡兔同笼”问题,考察它的推理能力。 📌 问题示例: 笼子里有鸡和兔,总共有 35 只头,94 只…...
请求响应(接上篇)
请求 日期参数 需要在前面加上一个注解DateTimeFormat来接收传入的参数的值 Json参数 JSON参数:JSON数据键名与形参对象属性名相同,定义POJO类型形参即可接收参数,需要使用 RequestBody 标识 通过RequestBody将JSON格式的数据封装到实体类…...
数组排序算法
数组排序算法 用C语言实现的数组排序算法。 排序算法平均时间复杂度最坏时间复杂度最好时间复杂度空间复杂度是否稳定适用场景QuickO(n log n)O(n)O(n log n)O(log n)不稳定大规模数据,通用排序BubbleO(n)O(n)O(n)O(1)稳定小规模数据,教学用途InsertO(n)…...
防火墙的安全策略
1.VLAN 2属于办公区;VLAN 3属于生产区,创建时间段 [FW]ip address-set BG type object [FW-object-address-set-BG]address 192.168.1.0 mask 25 [FW]ip address-set SC type object [FW-object-address-set-SC]address 192.168.1.129 mask 25 [FW]ip address-se…...
2025Java面试题超详细整理《微服务篇》
什么是微服务架构? 微服务框架是将某个应用程序开发划分为许多独立小型服务,实现敏捷开发和部署,这些服务一般围绕业务规则进行构建,可以用不同的语言开发,使用不同的数据存储,最终使得每个服务运行在自己…...
中位数定理:小试牛刀> _ <2025牛客寒假1
给定数轴上的n个点,找出一个到它们的距离之和尽量小的点(即使我们可以选择不是这些点里的点,我们还是选择中位数的那个点最优) 结论:这些点的中位数就是目标点。可以自己枚举推导(很好想) (对于 点的数量为…...
(2025,LLM,下一 token 预测,扩散微调,L2D,推理增强,可扩展计算)从大语言模型到扩散微调
Large Language Models to Diffusion Finetuning 目录 1. 概述 2. 研究背景 3. 方法 3.1 用于 LM 微调的高斯扩散 3.2 架构 4. 主要实验结果 5. 结论 1. 概述 本文提出了一种新的微调方法——LM to Diffusion (L2D),旨在赋予预训练的大语言模型(…...
如何开发一个大语言模型,开发流程及需要的专业知识
开发大型语言模型(LLM)是一个复杂且资源密集的过程,涉及多个阶段和跨学科知识。以下是详细的开发流程和所需专业知识指南: 一、开发流程 1. 需求分析与规划 目标定义:明确模型用途(如对话、翻译、代码生成…...
【数据采集】基于Selenium采集豆瓣电影Top250的详细数据
基于Selenium采集豆瓣电影Top250的详细数据 Selenium官网:https://www.selenium.dev/blog/ 豆瓣电影Top250官网:https://movie.douban.com/top250 写在前面 实验目标:基于Selenium框架采集豆瓣电影Top250的详细数据。 电脑系统:Windows 使用软件:PyCharm、Navicat 技术需求…...
neo4j-在Linux中安装neo4j
目录 切换jdk 安装neo4j 配置neo4j以便其他电脑可以访问 切换jdk 因为我安装的jdk是1.8版本的,而我安装的neo4j版本为5.15,Neo4j Community 5.15.0 不支持 Java 1.8,它要求 Java 17 或更高版本。 所以我需要升级Java到17 安装 OpenJDK 17 sudo yu…...
多无人机--强化学习
这个是我对于我的大创项目的构思,随着时间逐渐更新 项目概要 我们的项目平台来自挑战杯揭绑挂帅的无人机对抗项目,但是在由于时间原因,并未考虑强化学习,所以现在通过大创项目来弥补遗憾 我们项目分为三部分,分为虚…...
UE制作2d游戏
2d免费资产: Free 2D Game Assets - CraftPix.net 需要用到PaperZD插件 官网下载后启用即可 导入png素材 然后全选 - 创建Sprite 创建 人物基类 设置弹簧臂和相机 弹簧臂设置成旋转-90 , 取消碰撞测试 设置子类Sprite 拖到场景中 绑定设置输入映射,让角色移动跳跃 神似卡拉比…...
说一下JVM管理的常见参数
Java虚拟机(JVM)有许多常见参数,用于控制其行为和性能。以下是一些常见的JVM参数及其说明: 1. 内存管理参数 -Xms<size> START 设置初始堆内存大小。例如,-Xms512m表示初始堆大小为512MB。 -Xmx<size>…...
【FPGA】 MIPS 12条整数指令【2】
目录 仿真 代码 完整代码 实现slt 仿真 ori r1,r0,1100h ori r2,r0,0020h ori r3,r0,ff00h ori r4,r0,ffffh addi r5,r0,ffff slt r6,r5,r4 slt r6,r4,r3 代码 EX Slt:regcData ($signed(regaData)<$signed(regbData))?1b1:1b0; ID Inst_slt:be…...
机器学习--python基础库之Matplotlib (2) 简单易懂!!!
python基础库之Matplotlib(2) python基础库之Matplotlib0 准备1 散点图的绘制2 柱状图绘制3 其他 python基础库之Matplotlib 上篇文章机器学习–python基础库之Matplotlib (1) 超级详细!!!主要讲解了python的基础库matplotlib中绘图的流程以及折线图的…...
mybatis plus 持久化使用技巧及场景
mybatis plus提供了很多强大的持久化工具,新手容易对这些工具使用困难,下面我总结了一下mybatis plus持久化的使用技巧及使用场景。 一、持久化 官方文档:https://baomidou.com/guides/data-interface/ (一)通过ser…...
JVM监控和管理工具
基础故障处理工具 jps jps(JVM Process Status Tool):Java虚拟机进程状态工具 功能 1:列出正在运行的虚拟机进程 2:显示虚拟机执行主类(main()方法所在的类) 3:显示进程ID(PID,Process Identifier) 命令格式 jps […...
记录 | 基于MaxKB的文字生成视频
目录 前言一、安装SDK二、创建视频函数库三、调试更新时间 前言 参考文章:如何利用智谱全模态免费模型,生成大家都喜欢的图、文、视并茂的文章! 自己的感想 本文记录了创建文字生成视频的函数库的过程。如果想复现本文,需要你逐一…...
生成式AI安全最佳实践 - 抵御OWASP Top 10攻击 (下)
今天小李哥将开启全新的技术分享系列,为大家介绍生成式AI的安全解决方案设计方法和最佳实践。近年来生成式 AI 安全市场正迅速发展。据IDC预测,到2025年全球 AI 安全解决方案市场规模将突破200亿美元,年复合增长率超过30%,而Gartn…...
现场流不稳定,EasyCVR视频融合平台如何解决RTSP拉流不能播放的问题?
视频汇聚EasyCVR安防监控视频系统采用先进的网络传输技术,支持高清视频的接入和传输,能够满足大规模、高并发的远程监控需求。平台灵活性强,支持国标GB/T 28181协议、部标JT808、GA/T 1400协议、RTMP、RTSP/Onvif协议、海康Ehome、海康SDK、大…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
Spring是如何解决Bean的循环依赖:三级缓存机制
1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间互相持有对方引用,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制
目录 节点的功能承载层(GATT/Adv)局限性: 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能,如 Configuration …...
如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...
