DeepSeek、哪吒和数据库:厚积薄发的力量
以下有部分来源于AI,毕竟我认为AI还不能替代,他只能是辅助
快速迭代是应用程序不是工程
在这个追求快速迭代、小步快跑的时代,我们似乎总是被 “快” 的节奏裹挟着前进。但当我们静下心来,审视 DeepSeek 的发展、饺子导演创作哪吒系列电影的历程,以及数据库的版本发布,会发现,厚积薄发,往往有着更为震撼人心的力量。
两年前chatgpt在春节前后出世,而今年deepseek也是在春节前后火爆
其实无论chatgpt还是deepseek都是经历了很多年的积累。
OpenAI是一家位于美国旧金山的人工智能研究实验室,由营利性公司OpenAI LP及非营利性母公司OpenAI Inc组成。OpenAI最早作为非营利组织,于2015年底埃隆·马斯克、萨姆·奥尔特曼、伊尔亚·苏茨克维及其他投资者创立,该公司致力于开发人工智能和自然语言工具。可以看到早在10年前,我们还在互联网+和万众创业的时候,别人就在做这个事情了。
2016年,微软Azure云服务为OpenAI提供了算力条件,使得日后的ChatGPT要进行大规模深度学习、神经网络渲染等都成为可能。
2018年,OpenAI发布了最早的一代大型模型GPT-1,GPT-1运用几十亿文本档案的语言资料库进行训练,模型的参数量为1.17亿个。
2019年,GPT-2发布,模型参数量提高到15亿个。 [110]该模型架构与GPT-1原理相同,主要区别是GPT-2的规模更大(10倍)
2020年,GPT-3诞生,参数量达到了1750亿个,其训练参数是GPT-2的10倍以上,技术路线上则去掉了初代GPT的微调步骤,直接输入自然语言当作指示,给GPT训练读过文字和句子后可接续问题的能力。
2022年11月30日,OpenAI正式发布了ChatGPT。
直到这时候我们普通人才知道了AI大模型。
这相当于玩游戏时候,别人在家里一直发展科技树。最后升级到了顶级。每个兵种出来都是顶级的攻防,然后出来大杀四方。
再看deepseek。全称杭州深度求索人工智能基础技术研究有限公司。DeepSeek成立于2023年7月17日,由知名量化资管巨头幻方量化创立。成立好像看上去不长,但是这之前积累有多少时间还不清楚。我个人感觉不会是从2023年才开始的。之前在量化上积累了很多年。根据查询到的资料显示:2008年起,梁文锋开始带领团队使用机器学习等技术探索全自动量化交易。2015年,幻方量化正式成立。也就是说从差不多是从2015年开始积累。也差不多是10年。这个量化就是股市中的量化交易。我对量化交易(对股市不懂,所以从来不碰缅A)。具体怎么回事也不知道。
现在可以推测,大A的股民对面的就是这种超级人工智能,你怎么能赢?(当然我是不懂,是不是这么回事不知道。但是有可能就是这么回事)
说回技术:
2024年1月5日,发布DeepSeek LLM,这是深度求索的第一个大模型。DeepSeek LLM包含670亿参数,从零开始在一个包含2万亿token的数据集上进行了训练,数据集涵盖中英文。全部开源DeepSeek LLM 7B/67B Base和DeepSeek LLM 7B/67B Chat,供研究社区使用。DeepSeek LLM 67B Base在推理、编码、数学和中文理解等方面超越了Llama2 70B Base。
经过多年的努力,deepseek终于迎来了属于自己的高光时刻。也是这个春节IT人谈论最多的。
以上就是多年积累一朝出道。
春节另外的火爆 电影哪吒
2019年,《哪吒之魔童降世》以 50 亿元的票房创造了中国动画电影的奇迹。但是这个不是2019年的才做的。
资料显示,导演饺子在2015年,与20多家特效团队、60多家制作公司一起开始制作《哪吒之魔童降世》,也就是说做了5年。做出来了哪吒1。
而今年春节,《哪吒之魔童闹海》再度火爆,短短 6 天票房突破 40 亿。饺子导演为了这两部作品,付出了大量的时间和心血。
从“我命由我不由天”,到“你命由我不由天”(我活不活无所谓,我只要你死)。又用了5年。
《哪吒之魔童闹海》相比第一部制作时间更长,特效制作团队更是追求极致,一帧一帧精绘,如陈塘关大战中锁链效果的制作耗时整整一年。饺子
用多年时间打磨作品,不被短期利益诱惑,不急于求成,才为观众带来如此震撼的动画佳作。
以至于所有评价没看到一条负评价。敖光人形前不好判断对错,敖光人形后,大家觉得天庭应该权责。敖闰人性化,大家觉得龙族无罪,错在天庭。
成见是一座大山。这个放在那里都适用。
数据库产品
我本人不希望每周就都进行软件迭代,我认为就没有那么多重要的功能需要每周改。小步快跑,快速迭代的是业务模式。我们缺的是长期的产品。而且不少业务上就不适合敏捷开发的快速迭代。也许to c是的。但是to B和to G我觉得不是。
Oracle每5年发布一个大版本,每次版本都是足够惊艳。2013年的12C 2019年的19C 和2024年的23AI。也是这样的。年前在参加一些国产数据库的活动时候,原厂也说要放缓版本的节奏。我能理解之前是为了抢市场,现在是为了做产品了。
有些产品(比如数据库)还是应该像AI和哪吒一样。积累几年绽放一下。别一出来问题一堆。
相关文章:
DeepSeek、哪吒和数据库:厚积薄发的力量
以下有部分来源于AI,毕竟我认为AI还不能替代,他只能是辅助 快速迭代是应用程序不是工程 在这个追求快速迭代、小步快跑的时代,我们似乎总是被 “快” 的节奏裹挟着前进。但当我们静下心来,审视 DeepSeek 的发展、饺子导演创作哪吒…...
DDD - 微服务架构模型_领域驱动设计(DDD)分层架构 vs 整洁架构(洋葱架构) vs 六边形架构(端口-适配器架构)
文章目录 引言1. 概述2. 领域驱动设计(DDD)分层架构模型2.1 DDD的核心概念2.2 DDD架构分层解析 3. 整洁架构:洋葱架构与依赖倒置3.1 整洁架构的核心思想3.2 整洁架构的层次结构 4. 六边形架构:解耦核心业务与外部系统4.1 六边形架…...
第 1 天:UE5 C++ 开发环境搭建,全流程指南
🎯 目标:搭建 Unreal Engine 5(UE5)C 开发环境,配置 Visual Studio 并成功运行 C 代码! 1️⃣ Unreal Engine 5 安装 🔹 下载与安装 Unreal Engine 5 步骤: 注册并安装 Epic Game…...
【华为OD-E卷 - 109 磁盘容量排序 100分(python、java、c++、js、c)】
【华为OD-E卷 - 磁盘容量排序 100分(python、java、c、js、c)】 题目 磁盘的容量单位常用的有M,G,T这三个等级, 它们之间的换算关系为1T 1024G,1G 1024M, 现在给定n块磁盘的容量,…...
【大数据技术】编写Python代码实现词频统计(python+hadoop+mapreduce+yarn)
编写Python代码实现词频统计(python+hadoop+mapreduce+yarn) 搭建完全分布式高可用大数据集群(VMware+CentOS+FinalShell) 搭建完全分布式高可用大数据集群(Hadoop+MapReduce+Yarn) 本机PyCharm连接CentOS虚拟机 在阅读本文前,请确保已经阅读过以上三篇文章,成功搭建了…...
5-Scene层级关系
Fiber里有个scene是只读属性,能从fiber中获取它属于哪个场景,scene实体中又声明了fiber,fiber与scene是互相引用的关系。 scene层级关系 举例 在unity.core中的EntityHelper中,可以通过entity获取对应的scene root fiber等属性…...
JVM执行流程与架构(对应不同版本JDK)
直接上图(对应JDK8以及以后的HotSpot) 这里主要区分说明一下 方法区于 字符串常量池 的位置更迭: 方法区 JDK7 以及之前的版本将方法区存放在堆区域中的 永久代空间,堆的大小由虚拟机参数来控制。 JDK8 以及之后的版本将方法…...
本地部署 DeepSeek-R1:简单易上手,AI 随时可用!
🎯 先看看本地部署的运行效果 为了测试本地部署的 DeepSeek-R1 是否真的够强,我们随便问了一道经典的“鸡兔同笼”问题,考察它的推理能力。 📌 问题示例: 笼子里有鸡和兔,总共有 35 只头,94 只…...
请求响应(接上篇)
请求 日期参数 需要在前面加上一个注解DateTimeFormat来接收传入的参数的值 Json参数 JSON参数:JSON数据键名与形参对象属性名相同,定义POJO类型形参即可接收参数,需要使用 RequestBody 标识 通过RequestBody将JSON格式的数据封装到实体类…...
数组排序算法
数组排序算法 用C语言实现的数组排序算法。 排序算法平均时间复杂度最坏时间复杂度最好时间复杂度空间复杂度是否稳定适用场景QuickO(n log n)O(n)O(n log n)O(log n)不稳定大规模数据,通用排序BubbleO(n)O(n)O(n)O(1)稳定小规模数据,教学用途InsertO(n)…...
防火墙的安全策略
1.VLAN 2属于办公区;VLAN 3属于生产区,创建时间段 [FW]ip address-set BG type object [FW-object-address-set-BG]address 192.168.1.0 mask 25 [FW]ip address-set SC type object [FW-object-address-set-SC]address 192.168.1.129 mask 25 [FW]ip address-se…...
2025Java面试题超详细整理《微服务篇》
什么是微服务架构? 微服务框架是将某个应用程序开发划分为许多独立小型服务,实现敏捷开发和部署,这些服务一般围绕业务规则进行构建,可以用不同的语言开发,使用不同的数据存储,最终使得每个服务运行在自己…...
中位数定理:小试牛刀> _ <2025牛客寒假1
给定数轴上的n个点,找出一个到它们的距离之和尽量小的点(即使我们可以选择不是这些点里的点,我们还是选择中位数的那个点最优) 结论:这些点的中位数就是目标点。可以自己枚举推导(很好想) (对于 点的数量为…...
(2025,LLM,下一 token 预测,扩散微调,L2D,推理增强,可扩展计算)从大语言模型到扩散微调
Large Language Models to Diffusion Finetuning 目录 1. 概述 2. 研究背景 3. 方法 3.1 用于 LM 微调的高斯扩散 3.2 架构 4. 主要实验结果 5. 结论 1. 概述 本文提出了一种新的微调方法——LM to Diffusion (L2D),旨在赋予预训练的大语言模型(…...
如何开发一个大语言模型,开发流程及需要的专业知识
开发大型语言模型(LLM)是一个复杂且资源密集的过程,涉及多个阶段和跨学科知识。以下是详细的开发流程和所需专业知识指南: 一、开发流程 1. 需求分析与规划 目标定义:明确模型用途(如对话、翻译、代码生成…...
【数据采集】基于Selenium采集豆瓣电影Top250的详细数据
基于Selenium采集豆瓣电影Top250的详细数据 Selenium官网:https://www.selenium.dev/blog/ 豆瓣电影Top250官网:https://movie.douban.com/top250 写在前面 实验目标:基于Selenium框架采集豆瓣电影Top250的详细数据。 电脑系统:Windows 使用软件:PyCharm、Navicat 技术需求…...
neo4j-在Linux中安装neo4j
目录 切换jdk 安装neo4j 配置neo4j以便其他电脑可以访问 切换jdk 因为我安装的jdk是1.8版本的,而我安装的neo4j版本为5.15,Neo4j Community 5.15.0 不支持 Java 1.8,它要求 Java 17 或更高版本。 所以我需要升级Java到17 安装 OpenJDK 17 sudo yu…...
多无人机--强化学习
这个是我对于我的大创项目的构思,随着时间逐渐更新 项目概要 我们的项目平台来自挑战杯揭绑挂帅的无人机对抗项目,但是在由于时间原因,并未考虑强化学习,所以现在通过大创项目来弥补遗憾 我们项目分为三部分,分为虚…...
UE制作2d游戏
2d免费资产: Free 2D Game Assets - CraftPix.net 需要用到PaperZD插件 官网下载后启用即可 导入png素材 然后全选 - 创建Sprite 创建 人物基类 设置弹簧臂和相机 弹簧臂设置成旋转-90 , 取消碰撞测试 设置子类Sprite 拖到场景中 绑定设置输入映射,让角色移动跳跃 神似卡拉比…...
说一下JVM管理的常见参数
Java虚拟机(JVM)有许多常见参数,用于控制其行为和性能。以下是一些常见的JVM参数及其说明: 1. 内存管理参数 -Xms<size> START 设置初始堆内存大小。例如,-Xms512m表示初始堆大小为512MB。 -Xmx<size>…...
深度学习在微纳光子学中的应用
深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向: 逆向设计 通过神经网络快速预测微纳结构的光学响应,替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
以光量子为例,详解量子获取方式
光量子技术获取量子比特可在室温下进行。该方式有望通过与名为硅光子学(silicon photonics)的光波导(optical waveguide)芯片制造技术和光纤等光通信技术相结合来实现量子计算机。量子力学中,光既是波又是粒子。光子本…...
