当前位置: 首页 > news >正文

手机上运行AI大模型(Deepseek等)

最近deepseek的大火,让大家掀起新一波的本地部署运行大模型的热潮,特别是deepseek有蒸馏的小参数量版本,电脑上就相当方便了,直接ollama+open-webui这种类似的组合就可以轻松地实现,只要硬件,如显存,RAM足够,参数量合适,速度还可以接受。本地部署的意义在于,一是可以数据不上网,让一些私密的数据有所保障,二是可以实现一些在线限制的功能。

在手机上运行的意义,其实更多可能是玩玩,但是,随着LLM技术的发展,已经手机硬件正在赶超PC和服务器,或许在未来,手机上就可以实现电脑上同样的功能。小编收集了几种手机上部署运行的方法,分享给大家。

鸿蒙/安卓/IOS:使用MNN大模型App *** 多模态

有一说一,在大模型开源方面,阿里做得也是很棒地,在deepseek没有火爆之前,它应该是最棒的中国开源大模型公司,deepseek的蒸馏小模型,也用了qwen系列,为中国公司点赞!

安装就比较简单啦,直接下载App,然后下载模型运行即可,所说速度是比ollama要快一些,有阿里自已开发的架构。暂时发现只有安卓的编译好的下载地址:https://meta.alicdn.com/data/mnn/mnn_llm_app_debug_0_1.apk

安卓:MLC-MiniCPM *** 多模态

和下面的一样,但是,这个是国内公司的大模型,下载什么的更方便。MiniCPM 是面壁智能与清华大学自然语言处理实验室共同开源的系列模型,前段时间曾经有斯坦福大学的人抄袭了这个公司的产品,也是让外国人重新认识了国内的技术水平。

下载地址:https://openbmb.oss-cn-hongkong.aliyuncs.com/model_center/mobile/android/MiniCPM-2.0.apk
## 安卓/IOS:MLCChat *

下载APK: https://ghfast.top/https://github.com/mlc-ai/binary-mlc-llm-libs/releases/download/Android-09262024/mlc-chat.apk

如果下载不成功,网络连接错误,可以先打开https://ghproxy.link/,替换https://ghfast.top/网址为可用的即可。另外从官网看,这个App是直接从抱抱脸官方下载模型的,可能会网络错误,当然国内有镜像站,https://hf-mirror.com/ 不确定如何替换。

IOS: fullmoon **

Fullmoon是一款专为iOS设备设计的应用程序,旨在提供与本地大语言模型进行私密聊天的功能。该应用优化了Apple Silicon,支持在iPhone、iPad和Mac上运行。用户的聊天记录会被本地保存,并且可以自定义应用的外观。Fullmoon利用了Apple的MLX Swift框架,这是一个用于在Apple Silicon上进行机器学习研究的数组框架。该应用支持多种语言模型,包括Llama 3.2 1B、Llama 3.2 3B和DeepSeek-R1-Distill-Qwen-1.5B-4bit。

安卓:termux + ollama * 门槛稍高

安装termux App

Termux 是用于安卓的终端模拟器,安卓6.0以上机型,应用商店搜“Termux”安装即可。手机一般选轻量版1.5b就差不多了(8G RAM),16G RAM的应该可以选大点的。

在termux中安装 Ollama

手机安装好 Termux 后输入 Ollama Termux 一键安装脚本的命令,如下:

先更新

pkg update && pkg upgrade

然后使用一键脚本命令安装ollama

wget https://github.com/Dev-ing-ing/ollama-termux/releases/download/v1.0.0/ollama-installer.sh && bash ollama-installer.sh

部署DeepSeek, 在 Termux 命令启动 Ollama 服务器:

ollama serve

最后,安装 DeepSeek 模型,手机端建议选择 1.5b 模型,输入如下命令:

ollama run deepseek-r1:1.5b

就可以在命令行愉快地玩耍啦!

img

你还知道哪些方法,欢迎分享沟通呀!

参考

  1. https://www.aisharenet.com/fullmoon/
  2. https://github.com/alibaba/MNN/
  3. https://mp.weixin.qq.com/s/EdWJqkRyvXW0Y_QOwcEtlQ
  4. https://mp.weixin.qq.com/s/sK_5oi0yHt48Y0kfmIQVZA
  5. https://github.com/OpenBMB/mlc-MiniCPM/blob/main/README-ZH.md

相关文章:

手机上运行AI大模型(Deepseek等)

最近deepseek的大火,让大家掀起新一波的本地部署运行大模型的热潮,特别是deepseek有蒸馏的小参数量版本,电脑上就相当方便了,直接ollamaopen-webui这种类似的组合就可以轻松地实现,只要硬件,如显存&#xf…...

Mellanox网卡信息查看

1、查看Mellanox网卡的SN(序列号)和PN mstvpd 04:00.0或者lspci -s 04:00.0 -vvv来自https://enterprise-support.nvidia.com/s/article/MLNX2-117-2532kn 2、查看Mellanox网卡驱动、固件版本 ethtool -i ens6np0...

【漫画机器学习】083.安斯库姆四重奏(Anscombe‘s quartet)

安斯库姆四重奏(Anscombes Quartet) 1. 什么是安斯库姆四重奏? 安斯库姆四重奏(Anscombes Quartet)是一组由统计学家弗朗西斯安斯库姆(Francis Anscombe) 在 1973 年 提出的 四组数据集。它们…...

TCP | RFC793

注:本文为 “ RFC793” 相关文章合辑。 RFC793-TCP 中文翻译 编码那些事儿已于 2022-07-14 16:02:16 修改 简介 翻译自: RFC 793 - Transmission Control Protocol https://datatracker.ietf.org/doc/html/rfc793 TCP 是一个高可靠的主机到主机之间…...

2025蓝桥杯JAVA编程题练习Day2

1.大衣构造字符串 问题描述 已知对于一个由小写字母构成的字符串,每次操作可以选择一个索引,将该索引处的字符用三个相同的字符副本替换。 现有一长度为 NN 的字符串 UU,请帮助大衣构造一个最小长度的字符串 SS,使得经过任意次…...

《解锁GANs黑科技:打造影视游戏的逼真3D模型》

在游戏与影视制作领域,逼真的3D模型是构建沉浸式虚拟世界的关键要素。从游戏中栩栩如生的角色形象,到影视里震撼人心的宏大场景,高品质3D模型的重要性不言而喻。随着人工智能技术的飞速发展,生成对抗网络(GANs&#xf…...

es match 可查 而 term 查不到 问题分析

es 匹配逻辑 根本:es 的匹配是基于token 的。检索的query和目标字段在token 层级上有交集才能检索成功。对同样的文本,使用不同的分词器,所得token 不同。es 默认的analyzer(分词器)是standard模式,即按字切分。 基本上&#xf…...

【OpenCV实战】基于 OpenCV 的多尺度与模板匹配目标跟踪设计与实现

文章目录 基于 OpenCV 的模板匹配目标跟踪设计与实现1. 摘要2. 系统概述3. 系统原理3.1 模板匹配的基本原理3.2 多尺度匹配 4. 逻辑流程4.1 系统初始化4.2 主循环4.3 逻辑流程图 5. 关键代码解析5.1 鼠标回调函数5.2 多尺度模板匹配 6. 系统优势与不足6.1 优势6.2 不足 7. 总结…...

将有序数组转换为二叉搜索树(力扣108)

这道题需要在递归的同时使用双指针。先找到一个区间的中间值,当作子树的父节点,再递归该中间值的左区间和右区间,用于生成该父节点的左子树和右子树。这就是此题的递归逻辑。而双指针就体现在每一层递归都要使用左指针和右指针来找到中间值。…...

开放式TCP/IP通信

一、1200和1200之间的开放式TCP/IP通讯 第一步:组态1214CPU,勾选时钟存储器 第二步:防护与安全里面连接机制勾选允许PUT/GET访问 第三步:添加PLC 第四步:点击网络试图,选中网口,把两个PLC连接起…...

S4 HANA (递延所得税传输)Deferred Tax Transfer - S_AC0_52000644

本文主要介绍在S4 HANA OP中S4 HANA (递延所得税传输)Deferred Tax Transfer - S_AC0_52000644的后台配置及前台操作。具体请参照如下内容: 目录 Deferred Tax Transfer - S_AC0_52000644 1. 后台配置 1.1 Business Transaction Events激活- FIBF 2. 前台操作 …...

如何从0开始做自动化测试?

​自动化测试是使用软件工具在应用程序上自动运行测试的过程,无需任何人为干预。这可以通过减少手动测试的需要来保存时间并提高软件开发过程的效率。由于人为错误或不一致性,手动测试可能容易出错,这可能导致错误未被检测到。自动化测试通过…...

DeepSeek服务器繁忙问题的原因分析与解决方案

一、引言 随着人工智能技术的飞速发展,DeepSeek 等语言模型在众多领域得到了广泛应用。然而,在春节这段时间的使用过程中,用户常常遭遇服务器繁忙的问题,这不仅影响了用户的使用体验,也在一定程度上限制了模型的推广和…...

C#,入门教程(10)——常量、变量与命名规则的基础知识

上一篇: C#,入门教程(09)——运算符的基础知识https://blog.csdn.net/beijinghorn/article/details/123908269 C#用于保存计算数据的元素,称为“变量”。 其中一般不改变初值的变量,称为常变量,简称“常量”。 无论…...

宏观经济:信贷紧缩与信贷宽松、通货膨胀与通货紧缩以及经济循环的四个周期

目录 信贷紧缩与信贷宽松信贷紧缩信贷宽松信贷政策对经济影响当前政策环境 通货膨胀与通货紧缩通货膨胀通货紧缩通货膨胀与通货紧缩对比 经济循环的四个周期繁荣阶段衰退阶段萧条阶段复苏阶段经济周期理论解释经济周期类型 信贷紧缩与信贷宽松 信贷紧缩 定义:金融…...

分层解耦.

三层架构 controller:控制层,接收前端发送的请求,对请求进行处理,并响应数据 service:业务逻辑层,处理具体的业务逻辑 dao:数据访问层(Data Access Object)(持久层),负责数据访问操作,包括数据的增、删、改…...

JAVA异步的TCP 通讯-客户端

一、客户端代码示例 import java.io.IOException; import java.net.InetSocketAddress; import java.nio.ByteBuffer; import java.nio.channels.AsynchronousSocketChannel; import java.nio.channels.CompletionHandler; import java.util.concurrent.ExecutorService; impo…...

MySQL的存储引擎对比(InnoDB和MyISAM)

InnoDB 特点: 事务支持:InnoDB 是 MySQL 默认的事务型存储引擎,支持 ACID(原子性、一致性、隔离性、持久性)事务。行级锁定:支持行级锁,能够并发执行查询和更新操作,提升多用户环境…...

【2025-02-06】简单算法:相向双指针 盛最多水的容器 接雨水

📝前言说明: ●本专栏主要记录本人的基础算法学习以及LeetCode刷题记录,主要跟随B站博主灵茶山的视频进行学习,专栏中的每一篇文章对应B站博主灵茶山的一个视频 ●题目主要为B站视频内涉及的题目以及B站视频中提到的“课后作业”。…...

2.6-组合博弈入门

组合博弈入门 组合游戏 要求 有两个玩家;游戏的操作状态是一个有限的集合(比如:限定大小的棋盘);游戏双方轮流操作;双方的每次操作必须符合游戏规定;当一方不能将游戏继续进行的时候&#xf…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战

“&#x1f916;手搓TuyaAI语音指令 &#x1f60d;秒变表情包大师&#xff0c;让萌系Otto机器人&#x1f525;玩出智能新花样&#xff01;开整&#xff01;” &#x1f916; Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制&#xff08;TuyaAI…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...