在离线的服务器上部署Python的安装库
在离线服务器上部署 Python 安装库(如 SQLAlchemy、pandas、pyodbc 等),可以使用以下方法:
方法 1:在联网机器上下载依赖,拷贝到离线服务器
适用于:服务器完全无法访问互联网。
步骤
1. 在联网机器上下载所需的 Python 依赖
mkdir packages
pip download -r requirements.txt -d packages
或者单独下载:
pip download sqlalchemy pandas pyodbc -d packages
2. 将 packages 目录拷贝到离线服务器
3. 在离线服务器上安装
pip install --no-index --find-links=packages -r requirements.txt
或者手动安装:
pip install --no-index --find-links=packages sqlalchemy pandas pyodbc
默认会安装到全局 Python 环境(即 system-wide 的 Python 解释器)。
方法 2:使用 Python 虚拟环境(venv)
适用于:想要在本地创建完整环境,并复制到离线服务器。
步骤
1. 在联网机器上创建虚拟环境
python -m venv myenv
source myenv/bin/activate # Windows: myenv\Scripts\activate
pip install sqlalchemy pandas pyodbc
2. 压缩 venv 目录并拷贝到离线服务器
tar -czvf myenv.tar.gz myenv
scp myenv.tar.gz user@server:/path/to/destination
3. 在离线服务器上解压并使用
tar -xzvf myenv.tar.gz
source myenv/bin/activate
如果你想安装到虚拟环境
如果你不想影响全局 Python 环境,可以先创建并激活一个 虚拟环境,然后在其中安装:
1. 创建并激活虚拟环境
python -m venv myenv # 创建虚拟环境
source myenv/bin/activate # Linux/macOS
# Windows 上使用:
# myenv\Scripts\activate
2. 在虚拟环境中安装离线包
pip install --no-index --find-links=packages sqlalchemy pandas pyodbc
这样,所有的包都会安装在 myenv 目录下,而不会影响全局 Python 环境。
如何确认安装位置?
你可以使用以下命令检查 SQLAlchemy 的安装路径:
python -c "import sqlalchemy; print(sqlalchemy.__file__)"
• 如果安装在全局环境,路径可能类似:
/usr/lib/python3.11/site-packages/sqlalchemy/__init__.py
• 如果安装在虚拟环境,路径会在 venv 目录下:
/home/user/myenv/lib/python3.11/site-packages/sqlalchemy/__init__.py
如何卸载全局安装的库?
如果你误装到了全局环境,可以卸载:
pip uninstall sqlalchemy pandas pyodbc
然后使用虚拟环境重新安装。
相关文章:
在离线的服务器上部署Python的安装库
在离线服务器上部署 Python 安装库(如 SQLAlchemy、pandas、pyodbc 等),可以使用以下方法: 方法 1:在联网机器上下载依赖,拷贝到离线服务器 适用于:服务器完全无法访问互联网。 步骤 1. 在联网…...
计算机网络笔记再战——理解几个经典的协议2
理解互联网与TCP/IP 下面,我们将会开始理解互联网这个东西,进一步的,我们会理解何为TCP/IP 我们的互联网就是一个巨大的网状结构,需要注意的是——每一个网状的节点之间都是使用一个叫做NOC,Network Operation Center…...
设计高效的测试用例:从需求到验证
在现代软件开发过程中,测试用例的设计一直是质量保证(QA)环节的核心。有效的测试用例不仅能够帮助发现潜在缺陷,提升软件质量,还能降低后期修复成本,提高开发效率。尽管如此,如何从需求出发&…...
git reset 命令
git reset 的作用 git reset 是一个非常强大的命令,用于将当前分支的 HEAD(即当前指向的提交)重置到指定的提交。它还可以根据参数的不同,对工作区(Working Directory)和暂存区(Staging Area&a…...
docker被“遗忘”的那些参数该如何拯救
一、docker容器启动时没有指定端口,如何在不删除容器的情况下配置端口呢 在 Docker 中,如果容器启动时没有指定端口映射,可以通过以下步骤在不删除容器的情况下配置端口: 方法 1: 使用 docker commit 和 docker run 提交容器为新…...
BFS算法——广度优先搜索,探索未知的旅程(下)
文章目录 前言一. N叉树的层序遍历1.1 题目链接:https://leetcode.cn/problems/n-ary-tree-level-order-traversal/description/1.2 题目分析:1.3 思路讲解:1.4 代码实现: 二. 二叉树的锯齿形层序遍历2.1 题目链接:htt…...
Python分享20个Excel自动化脚本
在数据处理和分析的过程中,Excel文件是我们日常工作中常见的格式。通过Python,我们可以实现对Excel文件的各种自动化操作,提高工作效率。 本文将分享20个实用的Excel自动化脚本,以帮助新手小白更轻松地掌握这些技能。 1. Excel单…...
pytest+request+yaml+allure 接口自动化测试全解析[手动写的跟AI的对比]
我手动写的:Python3:pytest+request+yaml+allure接口自动化测试_request+pytest+yaml-CSDN博客 AI写的:pytest+request+yaml+allure 接口自动化测试全解析 在当今的软件开发流程中,接口自动化测试扮演着至关重要的角色。它不仅能够提高测试效率,确保接口的稳定性和正确性…...
深入解析 FFmpeg 的 AAC 编解码过程
深入解析 FFmpeg 的 AAC 编解码过程 —— 技术详解与代码实现 AAC(Advanced Audio Coding) 是一种高效的有损音频压缩格式,因其高压缩效率和良好的音质而被广泛应用于流媒体、广播和音频存储等领域。FFmpeg 是一个强大的多媒体处理工具,支持 AAC 的编码和解码。本文将详细…...
嵌入式硬件篇---OpenMV串口通信json字符串
文章目录 前言第一部分:Json字符串通信协议优点缺点 Json优点缺点编码与解码 第二部分:UART串口通信UART常用函数注意 总结 前言 以上就是今天要讲的内容,本文简单介绍了Json字符串、UART串口通信。 第一部分:Json字符串 通信协议 在传统的单片机应用中ÿ…...
Python基于Django的课堂投票系统的设计与实现【附源码】
博主介绍:✌Java老徐、7年大厂程序员经历。全网粉丝12w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专栏推荐订阅👇&…...
蓝桥杯 Java 之输入输出
一、输入输出方式:Scanner vs BufferedReader Scanner类 简介:Scanner 是 Java 中一个非常方便的用于读取用户输入的类,它可以从多种输入源(如标准输入、文件等)读取基本数据类型和字符串。 1. Scanner的细节与使用…...
Kubernetes是什么?为什么它是云原生的基石
从“手工时代”到“自动化工厂” 想象一下,你正在经营一家工厂。在传统模式下,每个工人(服务器)需要手动组装产品(应用),效率低下且容易出错。而Kubernetes(k8s)就像一个…...
@emotion/styled / styled-components创建带有样式的 React 组件
一、安装依赖 npm install emotion/styled styled-components 二、使用 import styled from emotion/styled; import styled from styled-components;// 创建一个带样式的按钮 const StyledButton styled.buttonbackground-color: #4caf50;color: white;padding: 10px 20px…...
Android 常用命令和工具解析之Battery Historian
Batterystats是包含在 Android 框架中的一种工具,用于收集设备上的电池数据。您可以使用adb bugreport命令抓取日志,将收集的电池数据转储到开发机器,并生成可使用 Battery Historian 分析的报告。Battery Historian 会将报告从 Batterystats…...
家用报警器的UML 设计及其在C++和VxWorks 上的实现01
M.W.Richardson 著,liuweiw 译 论文描述了如何运用 UML(统一建模语言)设计一个简单的家用报警器,并实现到 VxWorks 操作系统上。本文分两个部分,第一部分描述了如何用 UML 设计和验证家用报警器的模型,以使…...
k8s常见面试题2
k8s常见面试题2 安全与权限RBAC配置如何保护 Kubernetes 集群的 API Server?如何管理集群中的敏感信息(如密码、密钥)?如何限制容器的权限(如使用 SecurityContext)?如何防止容器逃逸࿰…...
CSS 伪类(Pseudo-classes)的详细介绍
CSS 伪类详解与示例 在日常的前端开发中,CSS 伪类可以帮助我们非常精准地选择元素或其特定状态,从而达到丰富页面表现的目的。本文将详细介绍以下伪类的使用: 表单相关伪类 :checked、:disabled、:enabled、:in-range、:invalid、:optional、…...
将Deepseek接入pycharm 进行AI编程
目录 专栏导读1、进入Deepseek开放平台创建 API key 2、调用 API代码 3、成功4、补充说明多轮对话 总结 专栏导读 🌸 欢迎来到Python办公自动化专栏—Python处理办公问题,解放您的双手 🏳️🌈 博客主页:请点击——…...
【Ollama】一、介绍
介绍 Ollama 是一个开源项目,专注于提供本地化的大型语言模型(LLM)部署和运行解决方案。它允许用户在本地环境中轻松运行和微调各种开源语言模型(如 LLaMA、Falcon 等),而无需依赖云服务或高性能 GPU。Oll…...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
Appium+python自动化(十六)- ADB命令
简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...
FFmpeg 低延迟同屏方案
引言 在实时互动需求激增的当下,无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作,还是游戏直播的画面实时传输,低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架,凭借其灵活的编解码、数据…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
