当前位置: 首页 > news >正文

《语义捕捉全解析:从“我爱自然语言处理”到嵌入向量的全过程》

首先讲在前面,介绍一些背景

RAG(Retrieval-Augmented Generation,检索增强生成)

是一种结合了信息检索与语言生成模型的技术,通过从外部知识库中检索相关信息,并将其作为提示输入给大型语言模型(LLMs),以增强模型处理知识密集型任务的能力。以下是RAG的具体操作过程解析:
1.数据准备阶段
• 数据提取:使用相应的数据加载器从各种数据源(如PDF、Word、CSV、HTML等)中提取文本数据。例如,可以使用TextLoader加载txt文本。

• 文本分割:将提取的文本分割成适当大小的块,以确保每个块的内容具有一定的语义完整性。常用的分割方法包括字符级分割、递归方式分割等。

• 向量化(embedding):使用嵌入模型(如HuggingFaceBgeEmbeddings)将分割后的文本块转换为向量表示。• 数据入库:将向量化后的文本块存储到向量数据库(如ChromaweaviateFAISS等)中,以便后续的高效检索。

2.检索阶段

• 用户提问:用户提出问题,系统需要从知识库中检索与该问题相关的信息。
• 向量化查询:使用相同的嵌入模型将用户的问题转换为向量表示。
• 相似度计算与检索:计算问题向量与知识库中文档块向量之间的相似度,选择相似度最高的前K个文档块作为当前问题的增强上下文信息。3.生成阶段
• 构造Prompt:将用户的问题和检索到的相关文档合并为一个新的提示(Prompt),可以使用ChatPromptTemplate等工具来构造。• LLM生成答案:将构造好的提示输入到大型语言模型(如ChatZhipuAI),模型会基于提供的信息生成最终的回答。

4.高级RAG

• 数据预处理:在数据索引阶段进行更精细的数据清洗、设计文档结构和添加元数据等,以提升文本的一致性、准确性和检索效率。
• 检索前处理:在检索前可以进行一些额外的处理,如查询扩展、语义解析等,以提高检索的准确性。
• 检索后处理:在检索后可以对结果进行排序、去重、融合等操作,以优化检索结果的质量。
• 生成优化:将检索与微调、强化学习等技术融合,进一步提升生成结果的质量和相关性。

5.模块化RAG
• 功能模块化:将RAG系统分解为多个功能模块,如查询搜索引擎、融合多个回答等,每个模块负责特定的任务。
• 模块编排:根据具体的应用场景和需求,对各个模块进行灵活的设计和编排,形成多种RAG模式。通过上述过程,RAG技术能够有效地结合外部知识库和大型语言模型的优势,生成更准确、更符合用户需求的回答。

向量化后的向量长度

• 固定长度:嵌入模型通常会将文本转换为固定长度的向量。例如,常见的嵌入模型如text-embedding-ada-002会生成固定长度的向量(如1024维或768维),无论输入文本的长度如何。

• 与文章无关:因此,不同文章的向量化后的向量长度是相同的,都是由嵌入模型的输出维度决定的。

向量数据库的存储

• 存储向量:向量化后的文本向量会被存储在向量数据库中。向量数据库专门用于存储和检索高维向量数据,如FAISS、Milvus等。

• 索引结构:向量数据库通常会建立索引结构(如KD树、球树、LSH等),以便快速检索相似向量。

检索和相似度计算

• 用户提问向量化:当用户提出问题时,使用相同的嵌入模型将问题文本转换为向量表示。

• 相似度计算:计算用户问题向量与向量数据库中存储的向量之间的相似度。常用的相似度计算方法包括:

• 余弦相似度:衡量两个向量之间的夹角余弦值,值越大表示越相似。

• 欧氏距离:衡量两个向量之间的直线距离,值越小表示越相似。

• 检索相关向量:根据相似度计算结果,选择相似度最高的前K个向量对应的文本块作为检索结果。

• 返回对应信息:通过检索到的文本块,找到与用户问题相关的信息,并将其作为上下文提供给语言模型进行生成。

示例代码
以下是一个简单的示例代码,展示如何使用嵌入模型和向量数据库进行检索:

from openai import OpenAI
import numpy as np
from numpy.linalg import norm# 初始化OpenAI客户端
client = OpenAI()# 获取嵌入向量
def get_embedding(text, model="text-embedding-ada-002"):response = client.embeddings.create(input=text, model=model)return response.data[0].embedding# 计算余弦相似度
def cosine_similarity(a, b):return np.dot(a, b) / (norm(a) * norm(b))# 示例文档
documents = ["联合国就苏丹达尔富尔地区大规模暴力事件发出警告","土耳其、芬兰、瑞典与北约代表将继续就瑞典“入约”问题进行谈判","日本岐阜市陆上自卫队射击场内发生枪击事件 3人受伤","国家游泳中心(水立方):恢复游泳、嬉水乐园等水上项目运营","我国首次在空间站开展舱外辐射生物学暴露实验",
]# 获取文档的嵌入向量
doc_embeddings = [get_embedding(doc) for doc in documents]# 用户提问
query = "国际争端"
query_embedding = get_embedding(query)# 计算相似度
similarities = [cosine_similarity(query_embedding, doc_embedding) for doc_embedding in doc_embeddings]# 输出最相似的文档
most_similar_index = np.argmax(similarities)
print(f"最相似的文档: {documents[most_similar_index]}")

输出结果

最相似的文档: 土耳其、芬兰、瑞典与北约代表将继续就瑞典“入约”问题进行谈判

通过上述过程,可以有效地根据用户提出的问题找到相关的向量和对应的信息。

正文如下开始旅程

在这里插入图片描述

相关文章:

《语义捕捉全解析:从“我爱自然语言处理”到嵌入向量的全过程》

首先讲在前面,介绍一些背景 RAG(Retrieval-Augmented Generation,检索增强生成) 是一种结合了信息检索与语言生成模型的技术,通过从外部知识库中检索相关信息,并将其作为提示输入给大型语言模型&#xff…...

HIVE如何注册UDF函数

如果注册UDF函数的时候报了上面的错误,说明hdfs上传的路径不正确, 一定要用下面的命令 hadoop fs -put /tmp/hive/111.jar /user/hive/warehouse 一定要上传到上面路径,这样在创建函数时,引用下面的地址就可以创建成功...

VsCode创建VUE项目

1. 首先安装Node.js和npm 通过网盘分享的文件:vsCode和Node(本人电脑Win11安装) 链接: https://pan.baidu.com/s/151gBWTFZh9qIDS9XWMJVUA 提取码: 1234 它们是运行和构建Vue.js应用程序所必需的。 1.1 Node安装,点击下一步即可 …...

x64、aarch64、arm与RISC-V64:详解四种处理器架构

x64、aarch64、arm与RISC-V64:详解四种处理器架构 x64架构aarch64架构ARM架构RISC-V64架构总结与展望在计算机科学领域,处理器架构是构建计算机系统的基石,它决定了计算机如何执行指令、管理内存和处理数据。x64、aarch64、arm与RISC-V64是当前主流的四种处理器架构,它们在…...

如何使用iframe来渲染ThingsBoard仪表盘

1、概述 当我们在使用ThingsBoard的时候,有时候需要再自己的前端项目中展示大屏,thingsboard的仪表盘是可以来做大屏的,虽然界面达不到非常的美观,但是对比之前的版本,现在的版本仪表盘做了很多的优化了。可以实现将thingsboard的仪表板嵌入到自己的vue界面中作为大屏显示…...

退格法记单词(类似甘特图)

退格法记单词,根据记忆次数或熟练程度退格,以示区分,该方法用于短时高频大量记单词: explosion爆炸,激增 mosquito蚊子granary粮仓,谷仓 offhand漫不经心的 transient短暂的slob懒惰而邋遢的…...

计算 MySQL 表行的成本是多少?

当计算表中的所有行时,将使用什么索引?好吧,MySQL文档文档对此提供了一个直接的答案,引用: InnoDB 通过遍历最小的可用二级索引来处理 SELECT COUNT(*) 语句除非索引或优化器提示指示优化器使用…...

Pygame介绍与游戏开发

提供pygame功能介绍的文档:Pygame Front Page — pygame v2.6.0 documentation 基础语法和实现逻辑 与CLI不同,pygame提供了图形化使用界面GUI(graphical user interface)基于图像的界面可以创建一个有图像和颜色的窗口 要让py…...

webpack配置方式

1. 基本配置文件 (webpack.config.js)(导出一个对象) 最常见的方式是通过 webpack.config.js 文件来配置 Webpack,导出一个对象。你可以在这个文件中导出一个配置对象,指定入口、输出、加载器、插件等。 // webpack.config.js m…...

10. k8s二进制集群之Kube Scheduler部署

在开始之前需要准备什么?创建kube-scheduler证书请求文件【即证书的生成⓵】根据上面证书配置文件生成kube-scheduler证书【即证书的生成⓶】创建与关联kube-scheduler配置文件(为后面生成系统服务做准备)创建kube-scheduler服务配置文件【准备系统服务⓵】创建kube-schedul…...

java实现8583报文解析技术详解

文章目录 概要整体架构流程技术名词解释技术细节小结概要 ISO 8583协议是金融交易系统中广泛使用的通信协议,用于规范报文的格式和数据交换。解析8583报文是实现金融交易系统的关键技术之一。本文将详细介绍8583报文解析的核心实现,重点关注解析算法和关键代码逻辑。 8583报…...

k8s服务发现有哪些方式?

在 Kubernetes 中,服务发现是指如何让应用程序在集群内互相找到并通信。Kubernetes 提供了多种服务发现的方式,适应不同的使用场景。以下是 Kubernetes 中常见的服务发现方式: 1. 环境变量(Environment Variables) 概…...

【SqlServer】SQL Server Management Studio (SSMS) 下载、安装、配置使用及卸载——保姆级教程

超详细的 SQL Server Management Studio (SSMS) 下载、安装、连接数据库配置及卸载教程 SQL Server Management Studio (SSMS) 是微软提供的图形化管理工具,主要用于连接、管理和开发 SQL Server 数据库。以下是详细的 SSMS 下载、安装、连接数据库以及卸载的完整教…...

[ESP32:Vscode+PlatformIO]添加第三方库 开源库 与Arduino导入第三方库的区别

前言 PlatformIO与Arduino在添加第三方库方面的原理存在显著差异 在PlatformIO中,第三方库的使用是基于项目(工程)的。具体而言,只有当你为一个特定的项目添加了某个第三方库后,该项目才能使用该库。这些第三方库的文…...

音频文件格式——AAC、OGG和FLAC

3.AAC文件格式 3.1 封装格式解析 高级音频编码 (Advanced Audio Coding) 是一种用于有损数字音频压缩的音频编码标准。它被设计为 MP3 格式的继承者,在相同比特率下通常可以获得比 MP3 更高的音质。AAC有两种封装格式: ADIF&am…...

BUU26 [极客大挑战 2019]HardSQL1

输入一些SQL关键词,发现空格,,union,and,by都被过滤了 被过滤,就用like替代 发现登录成功,可以注入 报错注入 注意 1.这里过滤了空格,就用()将内容包裹起来 比如说&#xff1a…...

多光谱成像技术在华为Mate70系列的应用

华为Mate70系列搭载了光谱技术的产物——红枫原色摄像头,这是一款150万像素的多光谱摄像头。 相较于普通摄像头,它具有以下优势: 色彩还原度高:色彩还原准确度提升约 120%,能捕捉更多光谱信息,使拍摄照片色…...

借助 Cursor 快速实现小程序前端开发

借助 Cursor 快速实现小程序前端开发 在当今快节奏的互联网时代,小程序因其便捷性、高效性以及无需下载安装的特点,成为众多企业和开发者关注的焦点。然而,小程序的开发往往需要耗费大量的时间和精力,尤其是在前端开发阶段。幸运…...

【deepseek】ollama chatbox webui 本地部署deepseek 踩坑记录

部署 1、前往Ollama官网下载跨平台工具 官网直达:https://ollama.com/download 2、挑选适合自己设备的模型版本,获取运行指令 访问模型库:https://ollama.com/library/deepseek-r1 ▌配置建议: • 入门级:1.5B版本&…...

在离线的服务器上部署Python的安装库

在离线服务器上部署 Python 安装库(如 SQLAlchemy、pandas、pyodbc 等),可以使用以下方法: 方法 1:在联网机器上下载依赖,拷贝到离线服务器 适用于:服务器完全无法访问互联网。 步骤 1. 在联网…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec? IPsec VPN 5.1 IPsec传输模式(Transport Mode) 5.2 IPsec隧道模式(Tunne…...

Map相关知识

数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...