doris:MySQL 兼容性
Doris 高度兼容 MySQL 语法,支持标准 SQL。但是 Doris 与 MySQL 还是有很多不同的地方,下面给出了它们的差异点介绍。
数据类型
数字类型
类型 | MySQL | Doris |
---|---|---|
Boolean | - 支持 - 范围:0 代表 false,1 代表 true | - 支持 - 关键字:Boolean - 范围:0 代表 false,1 代表 true |
Bit | - 支持 - 范围:1 ~ 64 | 不支持 |
Tinyint | - 支持 - 支持 signed,unsigned - 范围:signed 的范围是 -128 ~ 127,unsigned 的范围是 0 ~ 255 | - 支持 - 只支持 signed - 范围:-128 ~ 127 |
Smallint | - 支持 - 支持 signed,unsigned - 范围:signed 的范围是 -2^15 ~ 2^15-1,unsigned 的范围是 0 ~ 2^16-1 | - 支持 - 只支持 signed - 范围:-32768 ~ 32767 |
Mediumint | - 支持 - 支持 signed,unsigned - 范围:signed 的范围是 -2^23 ~ 2^23-1,unsigned 的范围是 0 ~ -2^24-1 | - 不支持 |
int | - 支持 - 支持 signed,unsigned - 范围:signed 的范围是 -2^31 ~ 2^31-1,unsigned 的范围是 0 ~ -2^32-1 | - 支持 - 只支持 signed - 范围: -2147483648~ 2147483647 |
Bigint | - 支持 - 支持 signed,unsigned - 范围:signed 的范围是 -2^63 ~ 2^63-1,unsigned 的范围是 0 ~ 2^64-1 | - 支持 - 只支持 signed - 范围: -2^63 ~ 2^63-1 |
Largeint | - 不支持 | - 支持 - 只支持 signed - 范围:-2^127 ~ 2^127-1 |
Decimal | - 支持 - 支持 signed,unsigned(8.0.17 以前支持,该版本以上标记为 deprecated) - 默认值:Decimal(10, 0) | - 支持 - 只支持 signed - 默认值:Decimal(9, 0) |
Float/Double | - 支持 - 支持 signed,unsigned(8.0.17 以前支持,该版本以上标记为 deprecated) | - 支持 - 只支持 signed |
日期类型
类型 | MySQL | Doris |
---|---|---|
Date | - 支持 - 范围:['1000-01-01','9999-12-31'] - 格式:YYYY-MM-DD | - 支持 - 范围:['0000-01-01', '9999-12-31'] - 格式:YYYY-MM-DD |
DateTime | - 支持 - DATETIME([P]),可选参数 P 表示精度 - 范围:'1000-01-01 00:00:00.000000' ,'9999-12-31 23:59:59.999999' - 格式:YYYY-MM-DD hh:mm .fraction | - 支持 - DATETIME([P]),可选参数 P 表示精度 - 范围:['0000-01-01 00:00:00[.000000]', '9999-12-31 23:59:59[.999999]'] - 格式:YYYY-MM-DD hh:mm .fraction |
Timestamp | - 支持 - Timestamp[(p)],可选参数 P 表示精度 - 范围:['1970-01-01 00:00:01.000000' UTC , '2038-01-19 03:14:07.999999' UTC] - 格式:YYYY-MM-DD hh:mm .fraction | - 不支持 |
Time | - 支持 - Time[(p)] - 范围:['-838:59:59.000000' to '838:59:59.000000'] - 格式:hh:mm .fraction | - 不支持 |
Year | - 支持 - 范围:1901 to 2155, or 0000 - 格式:yyyy | - 不支持 |
字符串类型
类型 | MySQL | Doris |
---|---|---|
Char | - 支持 - CHAR(M),M 为字符长度,缺省表示长度为 1 - 定长 - 范围:[0,255],字节大小 | - 支持 - CHAR(M),M 为字节长度 - 可变 - 范围:[1,255] |
Varchar | - 支持 - VARCHAR(M),M 为字符长度 - 范围:[0,65535],字节大小 | - 支持 - VARCHAR(M),M 为字节长度。 - 范围:[1, 65533] |
String | - 不支持 | - 支持 - 1048576 字节(1MB),可调大到 2147483643 字节(2G) |
Binary | - 支持 - 类似于 Char | - 不支持 |
Varbinary | - 支持 - 类似于 Varchar | - 不支持 |
Blob | - 支持 - TinyBlob、Blob、MediumBlob、LongBlob | - 不支持 |
Text | - 支持 - TinyText、Text、MediumText、LongText | - 不支持 |
Enum | - 支持 - 最多支持 65535 个 elements | - 不支持 |
Set | - 支持 - 最多支持 64 个 elements | - 不支持 |
JSON 数据类型
类型 | MySQL | Doris |
---|---|---|
JSON | 支持 | 支持 |
Doris 特有的数据类型
-
HyperLogLog
HLL 类型不能作为 Key 列使用。在 Aggregate 模型表中使用时,建表时配合的聚合类型为 HLL_UNION。用户不需要指定长度和默认值。长度根据数据的聚合程度系统内控制。并且 HLL 列只能通过配套的 HLL_UNION_AGG、HLL_RAW_AGG、HLL_CARDINALITY、HLL_HASH 进行查询或使用。
HLL 是模糊去重,在处理大数据量时,其性能优于 Count Distinct。HLL 的误差率通常在 1% 左右,有时可能会达到 2%。
-
BITMAP
BITMAP 类型不能作为 Key 列使用。在 Aggregate 表中使用时,还需配合 BITMAP_UNION 聚合定义。用户无需指定长度和默认值,长度会根据数据的聚合程度由系统内部控制。并且,BITMAP 列只能通过配套的 BITMAP_UNION_COUNT、BITMAP_UNION、BITMAP_HASH、BITMAP_HASH64 等函数进行查询或使用。
离线场景下使用 BITMAP 可能会影响导入速度,在数据量大的情况下,其查询速度会慢于 HLL,但优于 Count Distinct。注意:在实时场景下,如果 BITMAP 不使用全局字典,而使用了 BITMAP_HASH(),可能会导致约千分之一的误差。如果此误差不可接受,可以使用 BITMAP_HASH64。
-
QUANTILE_PERCENT(QUANTILE_STATE)
QUANTILE_STATE 类型不能作为 Key 列使用。在 Aggregate 模型表中使用时,建表时配合的聚合类型为 QUANTILE_UNION。用户不需要指定长度和默认值。长度根据数据的聚合程度系统内控制。并且 QUANTILE_STATE 列只能通过配套的 QUANTILE_PERCENT、QUANTILE_UNION、TO_QUANTILE_STATE 等函数进行查询或使用。
QUANTILE_STATE 是一种计算分位数近似值的类型,在导入时会对相同的 Key,不同 Value 进行预聚合,当 Value 数量不超过 2048 时,会采用明细记录所有数据,当 Value 数量大于 2048 时采用 TDigest 算法,对数据进行聚合(聚类),并保存聚类后的质心点。
-
Array<T>
Array 由 T 类型元素组成的数组,不能作为 Key 列使用。
-
MAP<K, V>
Map 是由 K, V 类型元素组成的映射表,不能作为 Key 列使用。
-
STRUCT<field_name:field_type, ... >
Struct 由多个 Field 组成的结构体,也可被理解为多个列的集合。不能作为 Key 使用。
一个 Struct 中的 Field 的名字和数量固定,且总是为 Nullable,一个 Field 通常由下面部分组成:
- field_name: Field 的标识符,不可重复
- field_type: Field 的类型
-
Agg_State
AGG_STATE 不能作为 Key 列使用,建表时需要同时声明聚合函数的签名。
用户不需要指定长度和默认值。实际存储的数据大小与函数实现有关。
AGG_STATE 只能配合STATE / MERGE / UNION函数组合器使用。
语法区别
DDL
1 CREATE TABLE
Doris 建表语法:
CREATE TABLE [IF NOT EXISTS] [database.]table
(column_definition_list[, index_definition_list]
)
[engine_type]
[keys_type]
[table_comment]
[partition_info]
distribution_desc
[rollup_list]
[properties]
[extra_properties]
与 MySQL 的不同之处:
参数 | 与 MySQL 不同之处 |
---|---|
column_definition_list | - 字段列表定义,其基本语法与 MySQL 类似。 - Doris 额外包含一个聚合类型的操作,主要支持的数据模型为 Aggregate Key。 - MySQL 允许在字段列表定义后添加 Index 等约束,如 Primary Key、Unique Key 等;而 Doris 则是通过定义数据模型来实现对这些约束和计算的支持。 |
index_definition_list | - 索引列表定义,基本语法与 MySQL 类似 - MySQL 支持位图索引、倒排索引和 N-Gram 索引。另外可以通过属性设置布隆过滤器索引。 - MySQL 支持 B+Tree 索引和 Hash 索引。 |
engine_type | - 表引擎类型,可选。 - 目前支持的表引擎主要是 OLAP 原生引擎。 - MySQL 支持的存储引擎有:Innodb,MyISAM 等 |
keys_type | - 数据模型,可选。 - 支持的类型包括:1)DUPLICATE KEY(默认):其后指定的列为排序列。2)AGGREGATE KEY:其后指定的列为维度列。3)UNIQUE KEY:其后指定的列为主键列。 - MySQL 则没有数据模型的概念。 |
table_comment | 表注释 |
partition_info | 分区算法,可选。 Doris 支持的分区算法,包括: - LESS THAN:仅定义分区上界。下界由上一个分区的上界决定。 - FIXED RANGE:定义分区的左闭右开区间。 - MULTI RANGE:批量创建 RANGE 分区,定义分区的左闭右开区间,设定时间单位和步长,时间单位支持年、月、日、周和小时。 MySQL 支持的算法:Hash,Range,List Key,并且还支持子分区,子分区支持的算法有 Hash 和 Key。 |
distribution_desc | - 分桶算法,必选,包括:1)Hash 分桶语法:DISTRIBUTED BY HASH (k1[,k2 ...]) [BUCKETS num|auto] 说明:使用指定的 key 列进行哈希分桶。2)Random 分桶语法:DISTRIBUTED BY RANDOM [BUCKETS num|auto] 说明:使用随机数进行分桶。 - MySQL 没有分桶算法。 |
rollup_list | - 建表的同时可以创建多个同步物化视图。 - 语法: rollup_name (col1[, col2, ...]) [DUPLICATE KEY(col1[, col2, ...])][PROPERTIES("key" = "value")] - MySQL 不支持 |
properties | 表属性,与 MySQL 的表属性不一致,定义表属性的语法也与 MySQL 不一致 |
2 CREATE INDEX
CREATE INDEX [IF NOT EXISTS] index_name ON table_name (column [, ...],) [USING BITMAP];
-
目前支持:位图索引、倒排索引和 N-Gram 索引,布隆过滤器索引(单独的语法设置)
-
MySQL 支持的索引算法有:B+Tree,Hash
3 CREATE VIEW
CREATE VIEW [IF NOT EXISTS][db_name.]view_name(column1[ COMMENT "col comment"][, column2, ...])
AS query_stmtCREATE MATERIALIZED VIEW (IF NOT EXISTS)? mvName=multipartIdentifier(LEFT_PAREN cols=simpleColumnDefs RIGHT_PAREN)? buildMode?(REFRESH refreshMethod? refreshTrigger?)?(KEY keys=identifierList)?(COMMENT STRING_LITERAL)?(PARTITION BY LEFT_PAREN partitionKey = identifier RIGHT_PAREN)?(DISTRIBUTED BY (HASH hashKeys=identifierList | RANDOM) (BUCKETS (INTEGER_VALUE | AUTO))?)?propertyClause?AS query
- 基本语法与 MySQL 一致
- Doris 除了支持逻辑视图外,还支持两种物化视图,同步物化视图和异步物化视图
- MySQL 不支持物化视图
4 ALTER TABLE / ALTER INDEX
Doris Alter 的语法与 MySQL 的基本一致。
DROP TABLE / DROP INDEX
Doris Drop 的语法与 MySQL 的基本一致
DML
1 INSERT
INSERT INTO table_name[ PARTITION (p1, ...) ][ WITH LABEL label][ (column [, ...]) ][ [ hint [, ...] ] ]{ VALUES ( { expression | DEFAULT } [, ...] ) [, ...] | query }
Doris Insert 语法与 MySQL 的基本一致。
2 UPDATE
UPDATE target_table [table_alias]SET assignment_listWHERE conditionassignment_list:assignment [, assignment] ...assignment:col_name = valuevalue:{expr | DEFAULT}
Doris Update 语法与 MySQL 基本一致,但需要注意的是必须加上 WHERE 条件。
3 DELETE
DELETE FROM table_name [table_alias] [PARTITION partition_name | PARTITIONS (partition_name [, partition_name])]WHERE column_name op { value | value_list } [ AND column_name op { value | value_list } ...];
Doris 该语法只能指定过滤谓词
DELETE FROM table_name [table_alias][PARTITION partition_name | PARTITIONS (partition_name [, partition_name])][USING additional_tables]WHERE condition
Doris 该语法只能在 Unique Key 模型表上使用。
Doris Delete 语法与 MySQL 基本一致。但是由于 Doris 是一个分析数据库,所以删除不能过于频繁。
4 SELECT
SELECT[hint_statement, ...][ALL | DISTINCT]select_expr [, select_expr ...][EXCEPT ( col_name1 [, col_name2, col_name3, ...] )][FROM table_references[PARTITION partition_list][TABLET tabletid_list][TABLESAMPLE sample_value [ROWS | PERCENT][REPEATABLE pos_seek]][WHERE where_condition][GROUP BY [GROUPING SETS | ROLLUP | CUBE] {col_name | expr | position}][HAVING where_condition][ORDER BY {col_name | expr | position} [ASC | DESC], ...][LIMIT {[offset_count,] row_count | row_count OFFSET offset_count}][INTO OUTFILE 'file_name']
Doris Select 语法与 MySQL 基本一致
SQL Function
Doris Function 基本覆盖绝大部分 MySQL Function。
相关文章:
doris:MySQL 兼容性
Doris 高度兼容 MySQL 语法,支持标准 SQL。但是 Doris 与 MySQL 还是有很多不同的地方,下面给出了它们的差异点介绍。 数据类型 数字类型 类型MySQLDorisBoolean- 支持 - 范围:0 代表 false,1 代表 true- 支持 - 关键字&am…...
mysql 存储过程和自定义函数 详解
首先创建存储过程或者自定义函数时,都要使用use database 切换到目标数据库,因为存储过程和自定义函数都是属于某个数据库的。 存储过程是一种预编译的 SQL 代码集合,封装在数据库对象中。以下是一些常见的存储过程的关键字: 存…...
C++ 中的 cJSON 解析库:用法、实现及递归解析算法与内存高效管理
在现代软件开发中,JSON(JavaScript Object Notation)作为一种轻量级的数据交换格式,因其易于阅读和编写、易于机器解析和生成的特性,被广泛应用于各种场景。C 作为一种强大的编程语言,自然也需要一个高效的…...
websocket自动重连封装
websocket自动重连封装 前端代码封装 import { ref, onUnmounted } from vue;interface WebSocketOptions {url: string;protocols?: string | string[];reconnectTimeout?: number; }class WebSocketService {private ws: WebSocket | null null;private callbacks: { [k…...
【C语言】球球大作战游戏
目录 1. 前期准备 2. 玩家操作 3. 生成地图 4. 敌人移动 5. 吃掉小球 6. 完整代码 1. 前期准备 游戏设定:小球的位置、小球的半径、以及小球的颜色 这里我们可以用一个结构体数组来存放这些要素,以方便初始化小球的信息。 struct Ball {int x;int y;float r;DWORD c…...
人工智能D* Lite 算法-动态障碍物处理、多步预测和启发式函数优化
在智能驾驶领域,D* Lite 算法是一种高效的动态路径规划算法,适用于处理环境变化时的路径重规划问题。以下将为你展示 D* Lite 算法的高级用法,包含动态障碍物处理、多步预测和启发式函数优化等方面的代码实现。 代码实现 import heapq impo…...
MySQL 8版本认证问题
目录 问题: Public Key Retrieval is not allowed原因: mysql 8.0 调整身份认证机制解决方法(三种) 问题: Public Key Retrieval is not allowed 连接MySQL8数据库的时候,报错内容如下:“Publi…...
Android 开发APP中参数配置与读取总结
以使用MQTT配置的参数 MQTT_BROKER_UR 、MQTT_USER_NAME、 MQTT_PASSWORD为例,说明配置设置和读取应用 项目中使用系统参数(如环境变量和gradle.properties文件中的属性)在Gradle构建脚本中,以下是一个详细的操作文档资料&…...
Scala 语法入门
Scala语法入门 1. 定义变量2. 定义方法3. 闭包4. 声明字符串5. 声明数组6. 声明集合7. 异常处理 1. 定义变量 (变量的类型在变量名之后等号之前声明) 不可变变量(val) 类似于 Java 中的 final 变量,即一旦赋值后,其值不能再被改…...
python中的flask框架
Flask 是一个用Python编写的轻量级Web应用框架 基于WSGI和Jinja2模板引擎 被称为“微框架”,其核心功能简单,不捆绑数据库管理、表单验证等功能,而是通过扩展来增加其他功能 Flask提供最基本的功能,不强制使用特定工具或库 通…...

【redis】缓存设计规范
本文是 Redis 键值设计的 14 个核心规范与最佳实践,按重要程度分层说明: 一、通用数据类型选择 这里我们先给出常规的选择路径图。 以下是对每个步骤的分析: 是否需要排序?: zset(有序集合)用…...

归一化与伪彩:LabVIEW图像处理的区别
在LabVIEW的图像处理领域,归一化(Normalization)和伪彩(Pseudo-coloring)是两个不同的概念,虽然它们都涉及图像像素值的调整,但目的和实现方式截然不同。归一化用于调整像素值的范围,…...

DeepSeek大模型本地部署实战
1. 下载并安装Ollama 打开浏览器:使用你常用的浏览器(如Chrome、Firefox等)访问Ollama的官方网站。无需特殊网络环境,直接搜索“Ollama”即可找到。 登录与下载:进入Ollama官网后,点击右上角的“Download…...

deepseek+kimi自动生成ppt
打开deepseek官网,输入详细的需求,让他生成个ppt 接着deepseek开始思考生成了 接着复制生成了的内容 打开kimi粘贴刚才deepseek生成的内容 可以一键生成啦,下载编辑使用吧...

集成SwanLab与HuggingFace TRL:跟踪与优化强化学习实验
文章目录 1. 引入SwanLabCallback2. 传入Trainer3. 完整案例代码4. GUI效果展示 TRL (Transformers Reinforcement Learning,用强化学习训练Transformers模型) 是一个领先的Python库,旨在通过监督微调(SFT)、近端策略优化…...

cefsharp131升级132测试(WinForms.NETCore)
一、升级(Nuget) 版本说明(readme):最低.NET Core3.1 (NET5.0) Visual C 2019 Redist 二、试运行、兼容性测试 三、后记说明 支持H264版本推荐版本63,79,84,88,100,111,125(支持h264和pdf预览) 其他H264版…...
Gitee AI上线:开启免费DeepSeek模型新时代
Gitee Al上线,并宣布开启免费DeepSeek模型的时代,这是一个非常值得关注的消息,因 为它标志着国内在AI领域的一个重要发展。DeepSeek模型是由阿里巴巴达摩院开发的,旨 在提供强大的自然语言处理(NLP)能力。下面是一些关于这一事件…...

nginx常用命令及补充
在Linux环境下nginx常用命令如下: 1、查看nginx版本号命令 nginx -v 2、查找nginx配置文件路径已经检查配置文件是否正确 nginx -t 3、查找nginx安装目录 which nginx 4、查看nginx进程 ps -ef|grep nginx 5、进入到nginx的sbin目录后,执行一下…...

自动驾驶---聊聊传统规控和端到端
1 背景 在自动驾驶领域中,端到端模型的兴起确实对传统的规划控制方法(笔者并不同意网上以Rule-Base称呼传统规控,传统的规控其实也使用了很多优化算法和博弈算法)产生了挑战,但这就意味着传统规控方法就完全没有应用了…...

node.js + html + Sealos容器云 搭建简易多人实时聊天室demo 带源码
node.js html Sealos容器云 搭建简易多人实时聊天室demo 带源码 前言功能介绍(demo演示)sealos官网配置node.js 编写服务端代码前端ui 调用接口整体项目目录部署到服务器 前言 hello哦盆友们,这次我们来十几行代码做一个超简单的多人聊天…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...

高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
Python如何给视频添加音频和字幕
在Python中,给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加,包括必要的代码示例和详细解释。 环境准备 在开始之前,需要安装以下Python库:…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
Caliper 配置文件解析:fisco-bcos.json
config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...

MyBatis中关于缓存的理解
MyBatis缓存 MyBatis系统当中默认定义两级缓存:一级缓存、二级缓存 默认情况下,只有一级缓存开启(sqlSession级别的缓存)二级缓存需要手动开启配置,需要局域namespace级别的缓存 一级缓存(本地缓存&#…...