当前位置: 首页 > news >正文

2、Python面试题解析:如何进行字符串插值?

Python字符串插值详解

字符串插值是将变量或表达式嵌入字符串中的一种技术,Python提供了多种方式实现字符串插值。以下是常见的几种方法及其详细解析和代码示例。


1. 百分号(%)格式化

这是Python早期版本中的字符串插值方法,类似于C语言的printf风格。

语法
"格式化字符串" % (变量1, 变量2, ...)
示例
name = "Alice"
age = 25
print("My name is %s and I am %d years old." % (name, age))
格式化符号
符号描述
%s字符串
%d十进制整数
%f浮点数
%x十六进制整数
%o八进制整数
优点
  • 简单直观,适合少量变量插值。
缺点
  • 可读性差,尤其是变量较多时。
  • 不支持复杂表达式。

2. str.format()方法

Python 2.6引入的字符串格式化方法,功能更强大。

语法
"格式化字符串".format(变量1, 变量2, ...)
示例
name = "Bob"
age = 30
print("My name is {} and I am {} years old.".format(name, age))
高级用法
  1. 位置参数

    print("{1} is {0} years old.".format(age, name))
    
  2. 关键字参数

    print("My name is {name} and I am {age} years old.".format(name="Charlie", age=35))
    
  3. 格式化数字

    pi = 3.14159
    print("Pi is approximately {:.2f}".format(pi))  # 保留两位小数
    
优点
  • 支持位置和关键字参数,灵活性高。
  • 可读性较好。
缺点
  • 语法稍显冗长。

3. f-string(格式化字符串字面量)

Python 3.6引入的字符串插值方法,是目前推荐的方式。

语法
f"格式化字符串{表达式}"
示例
name = "David"
age = 40
print(f"My name is {name} and I am {age} years old.")
高级用法
  1. 表达式计算

    a, b = 5, 10
    print(f"The sum of {a} and {b} is {a + b}.")
    
  2. 格式化数字

    pi = 3.14159
    print(f"Pi is approximately {pi:.2f}.")  # 保留两位小数
    
  3. 调用函数

    def greet(name):return f"Hello, {name}!"print(f"{greet('Eve')}")
    
优点
  • 语法简洁,可读性极佳。
  • 支持复杂表达式和函数调用。
  • 性能优于%str.format()
缺点
  • 仅支持Python 3.6及以上版本。

4. Template Strings(模板字符串)

Python标准库string模块提供的模板字符串,适合用户可控的简单插值。

语法
from string import Template
template = Template("格式化字符串")
template.substitute(变量字典)
示例
from string import Templatename = "Frank"
age = 45
template = Template("My name is $name and I am $age years old.")
print(template.substitute(name=name, age=age))
优点
  • 安全性高,适合处理用户输入。
  • 语法简单。
缺点
  • 功能有限,不支持复杂表达式。

5. 性能对比

以下是对四种方法的简单性能测试:

import timeit# 测试代码
setup = 'name = "Alice"; age = 25'
tests = {"% operator": '"My name is %s and I am %d years old." % (name, age)',"str.format": '"My name is {} and I am {} years old.".format(name, age)',"f-string": 'f"My name is {name} and I am {age} years old."',"Template": 'Template("My name is $name and I am $age years old.").substitute(name=name, age=age)'
}# 运行测试
for method, code in tests.items():time = timeit.timeit(code, setup=setup, number=100000)print(f"{method}: {time:.6f} seconds")
结果(示例)
% operator: 0.123456 seconds
str.format: 0.234567 seconds
f-string: 0.098765 seconds
Template: 0.345678 seconds
  • f-string性能最优。
  • %操作符次之。
  • Template最慢,但安全性最高。

6. 总结与推荐
方法适用场景推荐指数
f-stringPython 3.6+,高性能、简洁⭐⭐⭐⭐⭐
str.formatPython 2.6+,兼容性好⭐⭐⭐⭐
%操作符旧代码维护,简单插值⭐⭐⭐
Template用户输入处理,安全性要求高⭐⭐

推荐使用f-string,除非需要兼容旧版本或处理用户输入。

相关文章:

2、Python面试题解析:如何进行字符串插值?

Python字符串插值详解 字符串插值是将变量或表达式嵌入字符串中的一种技术,Python提供了多种方式实现字符串插值。以下是常见的几种方法及其详细解析和代码示例。 1. 百分号(%)格式化 这是Python早期版本中的字符串插值方法,类似…...

计算机网络-SSH基本原理

最近年底都在忙,然后这两天好点抽空更新一下。前面基本把常见的VPN都学习了一遍,后面的内容应该又继续深入一点。 一、SSH简介 SSH(Secure Shell,安全外壳协议)是一种用于在不安全网络上进行安全远程登录和实现其他安…...

doris:MySQL 兼容性

Doris 高度兼容 MySQL 语法,支持标准 SQL。但是 Doris 与 MySQL 还是有很多不同的地方,下面给出了它们的差异点介绍。 数据类型​ 数字类型​ 类型MySQLDorisBoolean- 支持 - 范围:0 代表 false,1 代表 true- 支持 - 关键字&am…...

mysql 存储过程和自定义函数 详解

首先创建存储过程或者自定义函数时,都要使用use database 切换到目标数据库,因为存储过程和自定义函数都是属于某个数据库的。 存储过程是一种预编译的 SQL 代码集合,封装在数据库对象中。以下是一些常见的存储过程的关键字: 存…...

C++ 中的 cJSON 解析库:用法、实现及递归解析算法与内存高效管理

在现代软件开发中,JSON(JavaScript Object Notation)作为一种轻量级的数据交换格式,因其易于阅读和编写、易于机器解析和生成的特性,被广泛应用于各种场景。C 作为一种强大的编程语言,自然也需要一个高效的…...

websocket自动重连封装

websocket自动重连封装 前端代码封装 import { ref, onUnmounted } from vue;interface WebSocketOptions {url: string;protocols?: string | string[];reconnectTimeout?: number; }class WebSocketService {private ws: WebSocket | null null;private callbacks: { [k…...

【C语言】球球大作战游戏

目录 1. 前期准备 2. 玩家操作 3. 生成地图 4. 敌人移动 5. 吃掉小球 6. 完整代码 1. 前期准备 游戏设定:小球的位置、小球的半径、以及小球的颜色 这里我们可以用一个结构体数组来存放这些要素,以方便初始化小球的信息。 struct Ball {int x;int y;float r;DWORD c…...

人工智能D* Lite 算法-动态障碍物处理、多步预测和启发式函数优化

在智能驾驶领域,D* Lite 算法是一种高效的动态路径规划算法,适用于处理环境变化时的路径重规划问题。以下将为你展示 D* Lite 算法的高级用法,包含动态障碍物处理、多步预测和启发式函数优化等方面的代码实现。 代码实现 import heapq impo…...

MySQL 8版本认证问题

目录 问题: Public Key Retrieval is not allowed原因: mysql 8.0 调整身份认证机制解决方法(三种) 问题: Public Key Retrieval is not allowed 连接MySQL8数据库的时候,报错内容如下:“Publi…...

Android 开发APP中参数配置与读取总结

以使用MQTT配置的参数 MQTT_BROKER_UR 、MQTT_USER_NAME、 MQTT_PASSWORD为例,说明配置设置和读取应用 项目中使用系统参数(如环境变量和gradle.properties文件中的属性)在Gradle构建脚本中,以下是一个详细的操作文档资料&…...

Scala 语法入门

Scala语法入门 1. 定义变量2. 定义方法3. 闭包4. 声明字符串5. 声明数组6. 声明集合7. 异常处理 1. 定义变量 (变量的类型在变量名之后等号之前声明) 不可变变量(val) 类似于 Java 中的 final 变量,即一旦赋值后,其值不能再被改…...

python中的flask框架

Flask 是一个用Python编写的轻量级Web应用框架 基于WSGI和Jinja2模板引擎 被称为“微框架”,其核心功能简单,不捆绑数据库管理、表单验证等功能,而是通过扩展来增加其他功能 Flask提供最基本的功能,不强制使用特定工具或库 通…...

【redis】缓存设计规范

本文是 Redis 键值设计的 14 个核心规范与最佳实践,按重要程度分层说明: 一、通用数据类型选择 这里我们先给出常规的选择路径图。 以下是对每个步骤的分析: 是否需要排序?: zset(有序集合)用…...

归一化与伪彩:LabVIEW图像处理的区别

在LabVIEW的图像处理领域,归一化(Normalization)和伪彩(Pseudo-coloring)是两个不同的概念,虽然它们都涉及图像像素值的调整,但目的和实现方式截然不同。归一化用于调整像素值的范围&#xff0c…...

DeepSeek大模型本地部署实战

1. 下载并安装Ollama 打开浏览器:使用你常用的浏览器(如Chrome、Firefox等)访问Ollama的官方网站。无需特殊网络环境,直接搜索“Ollama”即可找到。 登录与下载:进入Ollama官网后,点击右上角的“Download…...

deepseek+kimi自动生成ppt

打开deepseek官网,输入详细的需求,让他生成个ppt 接着deepseek开始思考生成了 接着复制生成了的内容 打开kimi粘贴刚才deepseek生成的内容 可以一键生成啦,下载编辑使用吧...

集成SwanLab与HuggingFace TRL:跟踪与优化强化学习实验

文章目录 1. 引入SwanLabCallback2. 传入Trainer3. 完整案例代码4. GUI效果展示 TRL (Transformers Reinforcement Learning,用强化学习训练Transformers模型) 是一个领先的Python库,旨在通过监督微调(SFT)、近端策略优化&#xf…...

cefsharp131升级132测试(WinForms.NETCore)

一、升级(Nuget) 版本说明(readme):最低.NET Core3.1 (NET5.0) Visual C 2019 Redist 二、试运行、兼容性测试 三、后记说明 支持H264版本推荐版本63,79,84,88,100,111,125(支持h264和pdf预览) 其他H264版…...

Gitee AI上线:开启免费DeepSeek模型新时代

Gitee Al上线,并宣布开启免费DeepSeek模型的时代,这是一个非常值得关注的消息,因 为它标志着国内在AI领域的一个重要发展。DeepSeek模型是由阿里巴巴达摩院开发的,旨 在提供强大的自然语言处理(NLP)能力。下面是一些关于这一事件…...

nginx常用命令及补充

在Linux环境下nginx常用命令如下: 1、查看nginx版本号命令 nginx -v 2、查找nginx配置文件路径已经检查配置文件是否正确 nginx -t 3、查找nginx安装目录 which nginx 4、查看nginx进程 ps -ef|grep nginx 5、进入到nginx的sbin目录后,执行一下…...

大话软工笔记—需求分析概述

需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码,因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存,无论是github还是gittee,都是一种基于git去保存代码的形式,这样保存代码…...

力扣热题100 k个一组反转链表题解

题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...

基于Java+VUE+MariaDB实现(Web)仿小米商城

仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意&#xff1a;运行前…...